

Proposed Student Accommodation

Prussia Street

Dublin 7

- Basement Impact Assessment

Document Control Sheet

Project Number:	KC12		
Project Name:	Proposed Student Accommodation, Prussia Street, Dublin 7		
Client:	Lyonshall Ltd.		
Document Title:	Basement Impact Assessment		
Document Reference:	KC12-RP-HLCE-CE-0004	Current Revision:	0

Issue History

Rev.	Date	Ву	Chk	Description
0	15.02.2024	PB	NF	Issued for Planning

Review			
Prepared By:	Pat Brady Niall FitzGerald		
Date:	15 th Februray 2024		
Other Contributors:			
Checked by:	Niall FitzGerald		

Table of Contents

1.0	Executive Summery	4			
1.1	OVERVIEW	4			
1.2	PURPOSE OF THE REPORT	4			
2.0	SITE DESCRIPTION	4			
2.1	SITE LOCATION	4			
2.2	SITE TOPOGRAPHY	5			
2.3	EXISTING GROUND CONDITIONS – SITE INVISTIGATION	6			
2.4	GEOLOGICAL AND HYDROGEOLOGICAL SETTING	7			
2.5	HYDROLOGICAL SETTING	9			
3.0	DESCRIPTION OF THE PROPOSED REDEVELOPMENT				
3.1	STRUCTURAL DESIGN OF PROPOSED DEVELOPEMNT				
3.2	BASEMENT CONSTRUCTION				
3.3	CONSTRUCTION WORK PROGRAMME				
4.0	CONCEPTUAL SITE MODEL				
5.0	POTENTIAL IMPACTS	22			
6.0	POTENTIAL CONTROL MEASURES	23			
7.0	CONTINUOUS SITE INVESTIGATION	24			
7.1	PRE-CONSTRUCTION STAGE	24			
7.2	CONSTRUCTION STAGE	24			
8.0 CONCLUSIONS					
Append	Appendix A - Geotechnical Site Investigation Report				

1.0 Executive Summery

1.1 OVERVIEW

Lyonshall Development Ltd. intend to apply for planning permission for the development of a Student Accommodation Facility at Prussia Street, Dublin 7.

Horganlynch have been appointed by Lyonshall to provide the necessary Engineering design and Consultancy services in respect to the proposed development.

The development will see the demolition of the existing industrial buildings on the site and the construction of 2 no. apartment blocks complete with 373 no. Student bedspaces and associated services. The development is also to include basement accommodation within the footprint of one of the apartment blocks and it is this basement that is the subject of this basement impact assessment.

1.2 PURPOSE OF THE REPORT

The purpose of the Basement Impact Assessment, as is defined in the Basement Development Guidance of Dublin City Council, is to identify potential impacts, short and long term; to inform whether a proposed basement is acceptable; and to identify whether appropriate mitigating measures can be incorporated.

On the following sections site location, project potential impacts and measures will be described.

This Basement Impact Assessment has been undertaken in line with Dublin City Council's Basement Development Guidance, the assessment aims to identify and evaluate the potential short and long-term impacts of proposed basement. It assesses the acceptability of the proposed basement on this site and identifies possible appropriate mitigating measures which may be incorporated.

This BIA was conducted to evaluate how constructing a basement in the proposed development would affect the current water conditions both during and after construction.

The following sections cover site location, potential project impacts, and associated measures.

2.0 SITE DESCRIPTION

2.1 SITE LOCATION

The propose student accommodation development is to be located on the site of the former IDA Centre at the west side of Prussia Street, Dublin 7 close to the main TU Dublin Grangegorman campus site.

The site is bounded to the east by Prussia Street (incl. terraced housing), to the north by a Drumalee Road Residential development, to the south by a Presbytery site and to the west by the public road serving Drumalee Court. - see figure 1 below.

Figure 1 Development Site at Prussia Street, Dublin 7

2.2 SITE TOPOGRAPHY

The existing site has a number of now disused former industrial and office building structures around the site.

The site itself generally falls approximately 3.5m from the north west to south west corner of the site.

Figure 2 below shows the site topographic survey plan with some of the principle spot levels and contours noted. The high point of the site is noted at +28.87 OD at the north west corner boundary. The low point of the site is to the south west at the main site entrance from Prussia Street which is a circa +25.0m OD.

The main entrance road within the site runs east west and is relatively level rising only circa 1.2m over a distance of 80m from +25.0m OD at the Prussia Street entrance to +26.12m OD at the western end of the road.

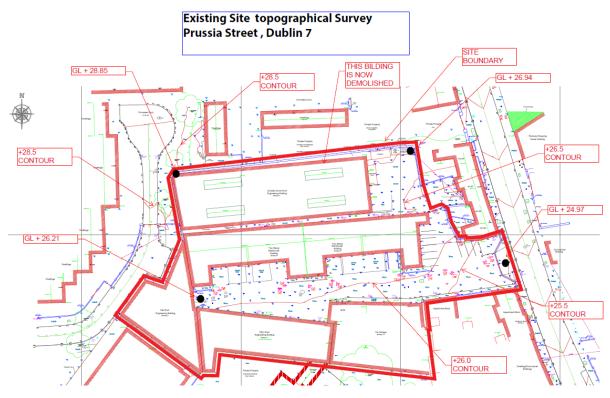


Figure 2 Existing Site Topographic Survey plan with ground levels indicated

2.3 EXISTING GROUND CONDITIONS – SITE INVISTIGATION

In April 2023 a geotechnical site investigation was carried out at the site. This investigation comprised of the following:

- 2 no. trial pits
- 4 no. percussion boreholes
- 4 no. rotary core follow on boreholes
- Installation of 1 no. ground water monitoring well
- Geotechnical & environmental laboratory testing

A report on the findings of the above was prepared and issued and a copy of same is appended to Appendix A of this report.

In summary, the SI found as follows:

- Ground conditions:

The sequence of strata was relatively consistent across the site and generally comprised as follows:

Made ground (0.6m-1.00m)

Cohesive deposits (sandy gravely clay to depths of 2.35m - 2.5m over stiff/very firm clay to depths of 14m)

Residual bedrock (at depths of 14m-18.5m)

Bedrock (at depths of circa 18m)

- Ground water:

No ground water was noted during the percussion borehole drilling. Ground water monitoring noted ground water at a depth of 2.36m BLG.

Based on the above findings, it would appear that rock will not be encountered during excavation for the basement and ground water will only impact on the final 1m-1.5m of the basement excavation.

2.4 GEOLOGICAL AND HYDROGEOLOGICAL SETTING

From the (GSI) Geological Society of Ireland maps the bedrock underlying the

site is part of the Luncan Formation and made up of dark limestone and shale.

The lithological description comprises fossiliferous, pale to dark grey, bedded marine limestones and thin shales and pale yellow to grey grainstones. Calcareous grits, sandstones and siltstones occur locally at the base.

Residual bedrock was encountered in the rotary core boreholes between 14m & 18.5m depth with solid bed rock at circa 18m below ground level. The site investigation boreholes which were undertaken by GII, had a maximum exploration depth of 23.5mbgl.

Figure 3 below shows an extract from the GSI geotechnical map which show records of a number of boreholes undertaken on adjoining sites to this proposed development site at Prussia Street.

These boreholes were taken to depths of between 5 and 10mblg with no rock met.



Figure 3 Extract for GSI Maps showing boreholes on adjacent site

The GSI also classifies the principal aquifer types in Ireland as:

- Lk: Locally Important Aquifer Karstifie
- LI: Locally Important Aquifer Bedrock which is Moderately Productive only in
- Local Zones
- Lm: Locally Important Aquifer Bedrock which is Generally Moderately
- Productive
- PI: Poor Aquifer Bedrock which is Generally Unproductive except for Local
- Zones
- Pu: Poor Aquifer Bedrock which is Generally Unproductive
- Rkd: Regionally Important Aquifer (karstified diffuse)
- From the GSI map the bedrock aquifer beneath the subject site as a 'Locally Important Aquifer Bedrock which is Moderately Productive only in Local Zones'.
- The GSI also classifies the groundwater vulnerability, which represents the intrinsic
- geological and hydrological characteristics that determine the ease with which
- groundwater may be contaminated generally by human activities.
- The GSI aquifer vulnerability class in the region of the site is presented as low as indicated in he map extract in figure 4 below.

From the GSI map the bedrock aquifer beneath the subject site as a 'Locally Important Aquifer – Bedrock which is Moderately Productive only in Local Zones'.

The GSI also classifies the groundwater vulnerability, which represents the intrinsic geological and hydrological characteristics that determine the ease with which groundwater may be contaminated generally by human activities.

The GSI aquifer vulnerability classifies the bedrock aquifer in the region of the subject site as having mainly 'Low' vulnerability which indicates a general overburden depth potential

greater than 10m, indicating that the aquifer is naturally well protected by low permeability tills.

See the GSI ground water vulnerability classification map extract in figure 4 below.

Figure 4 Extract for GSI Maps indicating the Ground Water Vulnerability of the site as low

The quaternary sediments in the area of the subject site indicates the principal subsoil type in the area comprises Limestone till Carboniferous (TLs, i.e. Till derived from limestones).

2.5 HYDROLOGICAL SETTING

As seen from the extract of the EPA map in figure 5 below , the site is located on the hydrometric area of the Liffey and Dublin bay (09) and the Tolka River sub-catchment.

According to the EPA maps, the site is located on the hydrometric area of the Liffey and Dublin Bay (09) and the Tolka River sub-catchment.

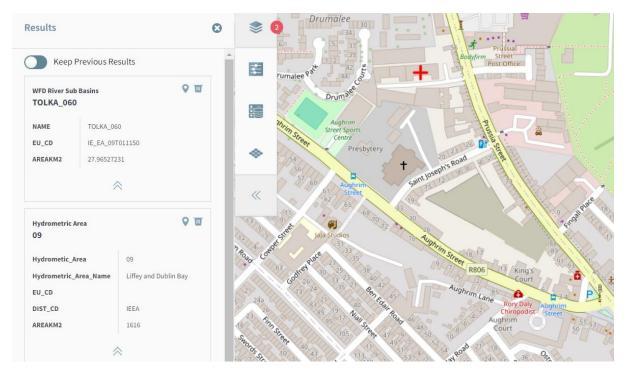


Figure 5 Extract for EPA Maps indicating the site hydrometric area as Liffey and Dublin Bay

There are no open watercourses at the site or in the immediate vicinity of the site.

The nearest watercourse to the site is the Liffey River c. 1 Km to the south of the site. Although the site lies within the Tolka River sub-catchment; the Tolka River is located c.3 Km to the north east. The Dublin Bay coastal waterbody is the nearest water receptor and is located c. 9 Km southeast of the proposed development site.

From a site specific flood Risk Assessment of the proposed site it has been determines that the there is no risk of fluvial, coastal or groundwater flooding as the proposed development falls within a fluvial and coastal Flood Zone C.

3.0 DESCRIPTION OF THE PROPOSED REDEVELOPMENT

As stated the proposed development is to be constructed on the site of the former IDA Centre at the west side of Prussia Street.

The site is located west of Prussia street in close proximity to the pedestrian access to the TU Campus at Grangegorman.

The site is bounded to the east by Prussia Street (incl. terraced housing), to the north by a Drumalee Road Residential development, to the south by a Presbytery site and to the west by the public road serving Drumalee Court.

The scope of the development is to comprise of the following:

The demolition of the existing structures on the site, and the construction of a large-scale residential development consisting of a Student Accommodation scheme with 373 no. student bedspaces, a café and all other ancillary site development works. The proposed development consists of 2 no. apartment blocks ranging in height from 4 to 5 storeys and a terrace of 6 no. studio units and all ancillary development works.

The building sub structure will generally comprise concrete raft slabs, strips and pad foundations constructed at various levels either on engineered fill or founded in the stiff clay sub strata. There will be reinforced concrete retaining walls to below ground and basement structures.

The buildings 4 & 5 story super structure will constructed utilizing a light gauge steel modular build system complete with composite metal deck and concrete floors. There will be some discrete hot rolled structural steel beam and column sections introduced with in the light gauge steel framing to facilitate load transfer within the super structure where vertical structures are unaligned. The vertical stair and lift cores will be constructed in reinforced concrete to provide the necessary lateral restraint and load transfer to the building structure.

The external façade will generally be brick and stone cladding supported back to the main structural frame.

The development is to include a single storey basement, which will comprise of the following accommodation:

- Courtyard
- Gym
- Study room & student lounge
- Games room
- Laundry room
- Cinema, plant rooms
- Open courtyard

See Figure 6 & 7 – Proposed Ground Floor Plan & Basement Plan

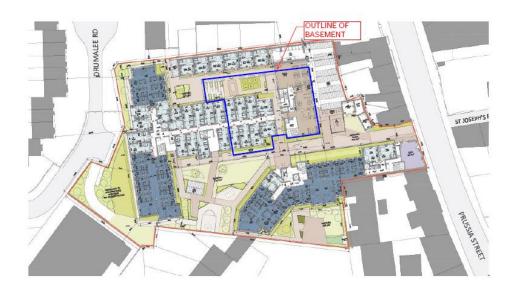


Figure 6 – Proposed Ground Floor Plan

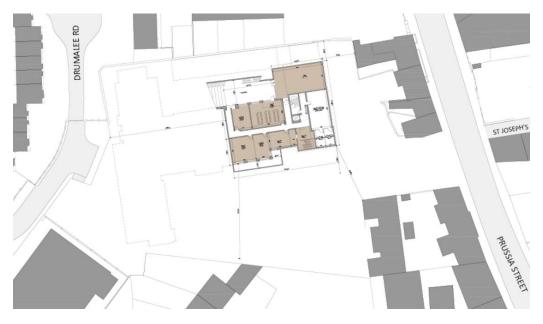


Figure 7 – Proposed Basement Plan

The location of this basement is such that the minimum distance of the basement to a boundary and adjoining building is as follows:

- 6m to the northern boundary
- 10m to the closest adjoining building to the east

3.1 STRUCTURAL DESIGN OF PROPOSED DEVELOPEMNT

The building sub structure will generally comprise concrete raft slabs, strips and pad foundations constructed at various levels either on engineered fill or founded in the stiff clay sub strata. There will be reinforced concrete retaining walls to below ground and basement structures.

The buildings 4 & 5 story super structure will be constructed utilizing a light gauge steel modular build system complete with composite metal deck and concrete floors. There will be some discrete hot rolled structural steel beam and column sections introduced with in the light gauge steel framing to facilitate load transfer within the super structure where vertical structures are unaligned. The vertical stair and lift cores will be constructed in reinforced concrete to provide the necessary lateral restraint and load transfer to the building structure.

The external façade will generally be brick and stone cladding supported back to the main structural frame.

3.2 BASEMENT CONSTRUCTION

The proposed basement will be single storey construction and will measure circa 31.5m x 25.55m in plan. The basement level will be circa 4m-4.5m below the existing ground level at the northern boundary. Figure 8 below shows the proposed basement construction plan.

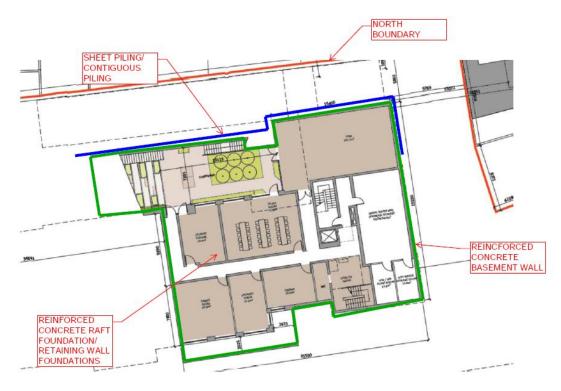


Figure 8 : Basement Construction Plan

Generally, the depth and location of the basement is such that conventional construction methods will be adopted for the build, this being excavating and the battering back the excavation to a safe working slope without impacting/undermining the adjoining sites or properties. However, at the northern side of the basement retention measures such as embedded cantilever sheet piling/contiguous piling will be installed to allow the basement to be excavation while protecting the site to the north.

The proposed structure of the basement will comprise of reinforced concrete basement slab and wall construction, both detailed and designed to the appropriate grade to cater for the proposed use of the basement.

Figure 9 & figure 10 below show the typical cross section details through the basement construction from both the open battered excavation and the retained piled excavation situation respectively.

Geotechnical Site investigation results indicate that the basement structure will be founded in the very stiff grey cohesive deposits. The basement floor level will be at circa +22.00m OD and the substructure will be a 400-450mm thick raft slab structure.

From the ground water monitoring undertaken at the SI stage ground water was noted in borehole 3 at -2.35m below ground level, this is circa 1.85m above the proposed basement floor level. Given this record water level localised dewatering will be required to facilitate the excavation and installation of the basement.

From the soil type and condition identified in the site investigation the excavation should be battered back to the open excavation areas at a batter of 2:1 Horz/vert in the upper made ground and cohesive deposits and at a 1:1 H/V batter in the stiff cohesive deposits.

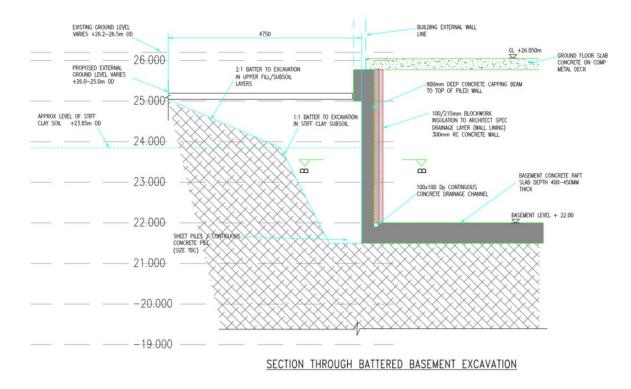


Figure 9 : Typical Section through Basement Construction at open batter excavation

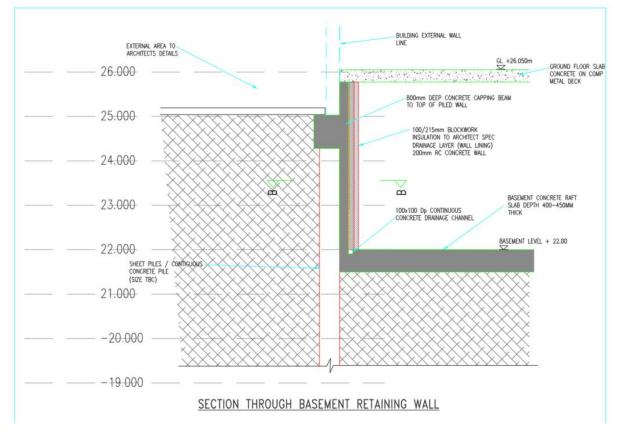


Figure 10 : Typical Section through Basement Construction at retained pile excavation

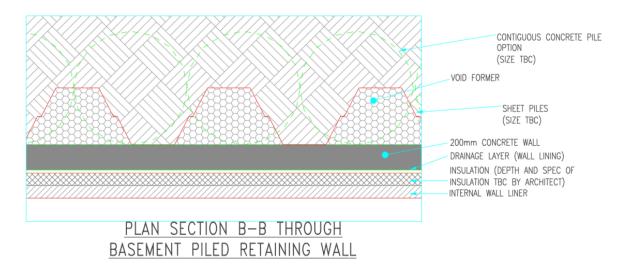


Figure 11 : Typical plan Sections through retained piled Basement Wall Construction

3.3 CONSTRUCTION WORK PROGRAMME

The following is an outline of the proposed basement construction sequence:

• Demolition of the existing site buildings and site clearance.

The existing buildings and ancillary site structures and features will be demolished and site cleared as necessary under a detailed demolition and site clearance scope of works package which will be completed by the appointed contractor in accordance with the relevant standards and guidelines.

• Basement construction:

A full site investigation has been and will be supplemented as required with further SI once the site is cleared and prior to construction commencing. A specialist ground works contractor will be appointed to carry out the excavation and any rock breaking works that may be required. It is noted from the SI bed rock will not be encountered but some boulders may be encountered. The appointed specialist contractor will carry out a full risk assessment prior to the commencement of work.

The works will include the necessary ground works, piling and excavations. The basement site area at ground formation level will be hardcored prior to the installation of the sheet/contiguous embedded pile retaining wall to the north and west of the basement footprint.

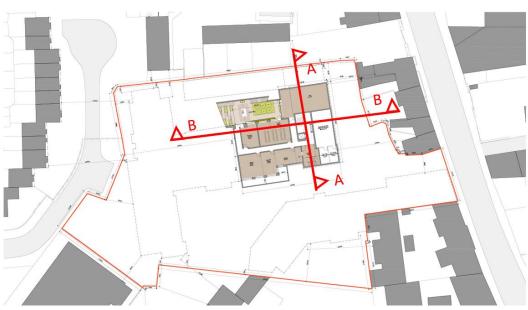
Material will be taken away at regular intervals in order to reduce the amount of material that will be stored on site. Excavated material will be reused on site where possible subject to the WAC analysis.

As excavation progresses sump pumps will be used to remove water to settlement tanks, treating it before discharging it into either local sump pits on the site remote from the basement excavation or the local drainage network.

The basement raft slab will be prepared , reinforcement installed and concrete placed on a tanking membrane and sealed at the formation level after excavation. A basement tanking system and water bars will be applied at construction joints.

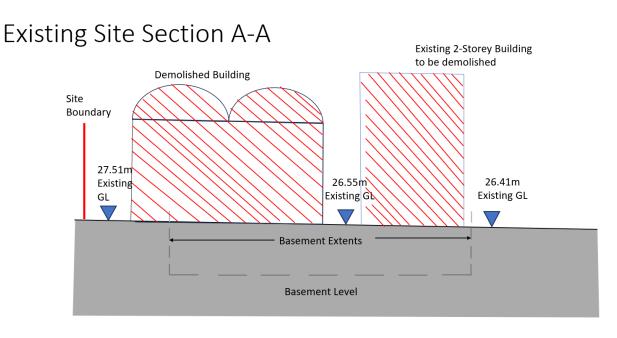
The typical construction process involves grading, casting mass concrete blinding, applying waterproof tanking material, installing reinforcement, and pouring concrete for the foundation raft. Large concrete volumes will be pumped using mobile or static concrete pumps.

The walls to the basement will be formed from the basement slab kicker level, reinforcement fixed in place and the wall shuttering erected and propped. Shuttering will be

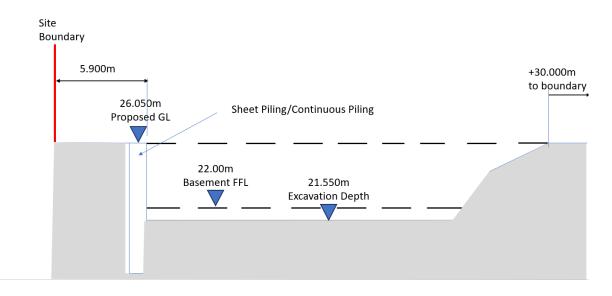


two sided to the open excavation sides and single sided where the walls are cast against the embedded piles. External waterproofing will be applied to the exposed walls or pre applied to the pile walls before concrete is cast against same.

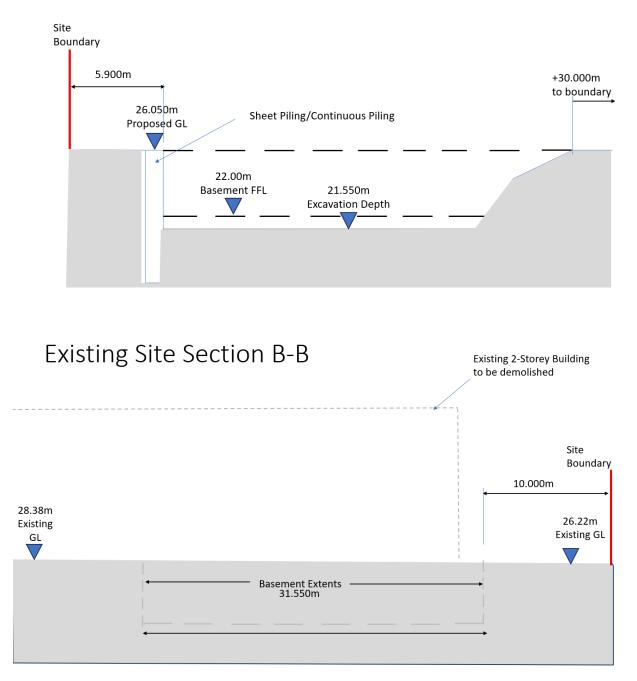
On completion of the walls and tanking and following installation of protection and land drains to same, the perimeter of the open basement excavation will be back filled with appropriate permeable granular back fill material.


4.0 CONCEPTUAL SITE MODEL

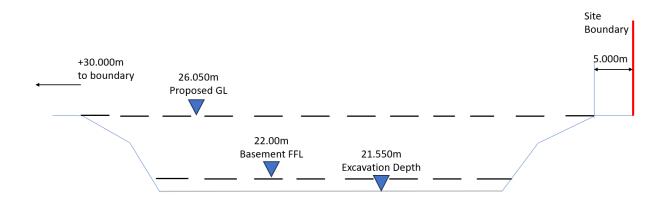
The following conceptual cross sections illustrates the post building demolition/site clearance conditions and the proposed basement construction and operation phases of the development as below.



Site Plan + basement



Proposed Site Excavation Section A-A



Proposed Site Excavation Section A-A

Proposed Site Excavation Section B-B

Proposed Basement Section B-B

5.0 POTENTIAL IMPACTS

There is no expected long-term impact on groundwater levels around the proposed site development as a result of the installation of a basement and embedded pile wall.

The basement does not intersect bedrock and no continuous perched water table was encountered during site investigations. The excavation will likely require collection of groundwater inflows and any collected rainwater.

Local shallow groundwater within overburden (Made ground and cohesive deposits over low permeability sandy gravelly Clay) will be intercepted by the basement retaining walls but following basement construction groundwater will migrate around the structure with no overall change in the groundwater and surface water regime.

As stated above, the proposed development will not result in any changes in the local groundwater and surface regime. The regional water table within bedrock will not be affected by the basement construction.

During construction, a very localised impact may occur during early stages of excavation and piling works until the embedded piles are in place. Once these are installed into the low permeability clay (made ground and cohesive deposits), there would be limited inflows into the excavation area from perched ground water and rainwater which will be controlled with pumped sumps.

The proposed basement construction, which would involve c. 4.5m deep excavations, has the potential to cause minor ground movements inside and outside the excavated area as a

result of changes in vertical load on the ground. The surrounding properties are at a significant distance from the basement location and as such the construction sequence outlined before will control any potential movement to within acceptable limits.

The subject site is not directly hydrogeologically connected to Dublin Bay through the Dublin aquifer via a source-pathway-receptor as vertical migration to the underlying limestone bedrock is minimized because of the thick overburden clay soils present at the site, categorizing it as having 'Low' vulnerability. This thickness of overburden provides a high level of protection for the aquifer from any potential sources. Consequently, natural attenuation within the overburden reduces the likelihood of off-site migration, and no significant impact on the aquifer's status is anticipated.

6.0 POTENTIAL CONTROL MEASURES

The design will incorporate standard construction measures to safeguard water quality, including the following:

- Localized pumping of surface runoff from excavations during and after heavy rainfall to keep trenches relatively dry. Minor ingress of groundwater and collected rainfall will be pumped out during construction, with low expected groundwater inflow.
- On-site pre-treatment and silt reduction measures, such as silt fencing, settlement measures, and hydrocarbon interceptors. Silt traps and an oil interceptor (if needed) will be employed based on monitoring results, ensuring no discharge of silt or contaminated water. Rigorous monitoring will confirm water quality compliance for discharge.
- To prevent material spillages affecting subsurface strata, oils, solvents, and paints used during construction will be stored in temporary bunded areas.
- Whenever possible, ready-mixed concrete will be delivered by truck, with a prior risk assessment for wet concrete work. Measures will be in place to prevent the discharge of alkaline wastewaters or contaminated stormwater into the subsoil. Wash down of concrete transport vehicles will occur offsite.
- Groundwater level monitoring before basement construction, along with vibration and noise monitoring during excavation and wall construction, will complement the aforementioned measures.

7.0 CONTINUOUS SITE INVESTIGATION

Site investigations are to be carried out at several stages, including pre-construction phase and during construction.

7.1 PRE-CONSTRUCTION STAGE

A site ground investigation was carried out in by Ground Investigations Ireland (GII) in April 2023.

As set out in section 3.1 of this report the SI included 2no.trial holes, 4No. percussion bore holes, 4No. rotary core follow on boreholes and the installation of 1No. ground water monitoring well.

• Ground conditions

From the site investigation information and interpretation of the geotechnical properties of the ground, as set out in section 3.2 of this report, it has been determined that the excavation of the basement area should be undertaken after the installation of the embedded pile retain wall to the north and west of the basement dig and that the other excavations can be safely undertaken with open cut excavation with a batter of 2H:1V or 1H:1V.

• Ground Water Monitoring

No groundwater was noted during the percussion borehole drilling. Groundwater was recorded in the monitoring well BH-03 at 2.36m below ground level.

7.2 CONSTRUCTION STAGE

Based on groundwater monitoring results of the preliminary GI, it is considered that ground water will be present with in lower 1.85m of the basement dig, this will be to be controlled and removed with the use of sump pumps sumps during construction works.

Due to the potential for minor ground movements during excavation works, at locations where movements are of critical importance, appropriate instrumentation will be installed and the wall and ground movements monitored accordingly.

Based on groundwater monitoring on site to date it is considered that there is a moderate to low risk of inflow during construction works. However, (2no.) groundwater monitoring wells are being recommended to be installed outside of the basement footprint with water level data collection will be undertaken before during and after construction.

8.0 CONCLUSIONS

The planned basement will not cause lasting changes to water levels in the surrounding soil layers or to the underlying aquifer and will have no impact on the current water body status. The excavation work will not influence the water table in the bedrock. Any temporary lowering of the water table in the clayey deposits, done to aid excavation, is anticipated to be minimal and will only have a temporary local impact.

The basement will need to be fully waterproofed to ensure no groundwater enters the finished basement. Site investigation has not identified any significant water bearing gravels within the basement footprint. However, if water bearing gravels are encountered then the design should facilitate discharge around the basement structure.

Management of any collected rainwater and any groundwater seepage during basement excavations will be pumped to existing sewers (following appropriate treatment) in agreement with the regulatory authority.

To prevent groundwater from entering the completed basement, it is essential to thoroughly waterproof it. The site investigation did not reveal any substantial water-bearing gravels beneath the planned basement area. However, given the anticipated level of water as seen in the monitoring well at 2.36m below ground level it is recommended that the design will allow for proper drainage around the basement structure.

The implementation of a embedded pile retaining wall along the north and west side of the basement excavation and the open cut excavation to the recommended safe slope batters will ensure there are no concerns regarding slope stability and horizontal movement will be limited to acceptable limits by careful detailed design.

Overall, the impact on the environment as a result of the proposed basement development in the area will be neutral and will have no perceptible long term effects provided mitigation measures above described are implemented.

Appendix A - Geotechnical Site Investigation Report

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Prussia Street

Horganlynch Consulting Engineers

Ground Investigation Report

May 2023

Directors: Fergal McNamara (MD), Conor Finnerty, Aisling McDonnell, Barry Sexton & Stephen Kealy Ground Investigations Ireland Limited | Registered in Ireland Company Registration No.: 405726

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Prussia Street	
Engineer	Horganlynch Consulting Engineers	
Project No	12680-03-23	
Document Title Ground Investigation Report		

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Final	B Sexton	J Cashen	C Finnerty	Dublin	15 May 2023

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

1.0	Preamble1
2.0	Overview1
2.1.	Background1
2.2.	Purpose and Scope1
3.0	Subsurface Exploration1
3.1.	General1
3.2.	Foundation Pits2
3.3.	Percussion Boreholes2
3.4.	Rotary Boreholes2
3.5.	Surveying
3.6.	Groundwater/Gas Monitoring Installations3
3.7.	Laboratory Testing
4.0	Ground Conditions
4.1.	General3
4.2.	Groundwater4
4.3.	Laboratory Testing
4.3.1.	Chemical Laboratory Testing5
4.3.2.	Environmental Laboratory Testing5
4.3.3.	Rock Laboratory Testing5
5.0	Recommendations & Conclusions6
5.1.	General6
5.2.	Foundations6
5.3.	Excavations6

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Foundation Inspection Pit Records
Appendix 3	Borehole Records
Appendix 4	Laboratory Testing
Appendix 5	Groundwater Monitoring

1.0 Preamble

On the instructions of Horgan Lynch Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd. in April 2023 at the site of the proposed student housing development in Prussia Street, Dublin 7.

2.0 Overview

2.1. Background

It is proposed to construct a new student housing development with associated services and access pavements at the proposed site. The site is currently brownfield. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 2 No. Foundation Inspection Pits to determine existing foundation details
- Carry out 4 No. Light Percussion boreholes to a maximum depth of 3.40m BGL
- Carry out 4 No. Rotary Core Follow On Boreholes to a maximum depth of 23.50m BGL
- Installation of 1 No. Groundwater monitoring well
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Foundation Pits

The foundation inspection pits were excavated at the locations shown in the exploratory hole location plan in Appendix 1. The exposed foundations were logged and sketched prior to backfilling and reinstatement. It was not possible to progress the foundation pit FP01 to expose the foundation due to the presence of several services at the location of FP01. The logs and sketches are provided in Appendix 2 of this Report.

3.3. Percussion Boreholes

The percussion boreholes were carried out at the locations shown in the location plan in Appendix 1 using a Tecop S. A. SPT Tec 10 percussion drilling rig. The percussion sampling consists of a 1m long steel tube with a cutting edge and an internal plastic liner which is mechanically driven into the ground utilising a 63.5kg weight falling a height of 760mm. Upon completion of the 1m sample, the tube is withdrawn and the plastic liner removed and sealed for logging and sub sampling by a Geotechnical Engineer/Engineering Geologist. The tube is replaced in the borehole and a subsequent 1m sample can be recovered. Occasionally outer casing or a reduced diameter tube is utilised to enable the window sample to progress in difficult drilling conditions. Geotechnical or environmental soil samples can be recovered from each of the liners following logging. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a weight of 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The light percussion with rotary borehole follow on logs are provided in Appendix 3 of this Report.

3.4. Rotary Boreholes

The rotary coring was carried out by a track mounted T47S Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T47S Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids.

It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The light percussion with rotary borehole follow on logs are provided in Appendix 3 of this Report.

3.5. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.6. Groundwater/Gas Monitoring Installations

Groundwater and or Gas Monitoring Installation were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm uPVC/HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.7. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite, pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Rock strength testing including Point Load (Is₅₀) and Unconfined Compressive Strength (UCS) testing was carried out in the Construction Materials Testing Laboratories (CMTL) in Portlaoise, County Laois. The results of the laboratory testing are included in Appendix 4 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were relatively consistent across the site and generally comprised;

- Made Ground
- Cohesive Deposits
- Residual Bedrock
- Bedrock

MADE GROUND: Made Ground deposits were encountered at all exploratory hole locations and ranged in depth for 0.60m to 1.00m BGL. These made ground deposits were described generally as *sandy clayey fine to coarse subangular Gravel or slightly sandy slightly gravelly Clay with occasional subangular to subrounded cobbles and occasional fragments of anthropogenic material including red brick, coal, mortar, ceramic, concrete and metal.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown slightly sandy slightly gravelly CLAY* to a depth of 2.35m to 2.50m BGL. These deposits were underlain by *dark grey slightly sandy gravelly CLAY*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was stiff or very stiff below 2.00m BGL at all locations. These deposits had occasional, some or many cobble and boulder content, where noted on the exploratory hole logs.

RESIDUAL BEDROCK: At BH-03, residual bedrock was encountered from 14.95m to 18.50m BGL. It was described as an *extremely weak black MUDSTONE / very stiff black silty CLAY with rock fragments*, based on the condition of the recovered material. Pyrite growth was also noted within the recovered material.

COMPETENT BEDROCK: At BH-03, competent bedrock was recorded at 18.50m BGL. It was described as a *weak to strong thinly laminated dark grey fine grained argillaceous LIMESTONE.* This is typical of the Lucan Formation, which is noted on the Geological Survey of Ireland's (GSI) geological mapping of the site. The degree of weathering ranged from fresh to slightly weathered. Calcite veins were also noted with the rock mass. The total core recovery is good, typically 100%. The SCR and RQD both are relatively poor in the upper weathered zone, often recovered as non-intact, however both indices show an increase with depth at BH-03.

4.2. Groundwater

No groundwater was noted during the percussion borehole drilling. It should also be noted that water strikes were not able to be identified during the rotary core drilling as water is added as part of the drilling process. Groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, a standpipe was installed in BH-03. The groundwater monitoring is included in Appendix 5 of this Report.

4.3. Laboratory Testing

4.3.1. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.3.2. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation. The waste classification report is included under the cover of a separate report by Ground Investigations Ireland.

4.3.3. Rock Laboratory Testing

The rock testing data were not available at the time of writing this report.

The results from the completed laboratory testing are included in Appendix 4 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

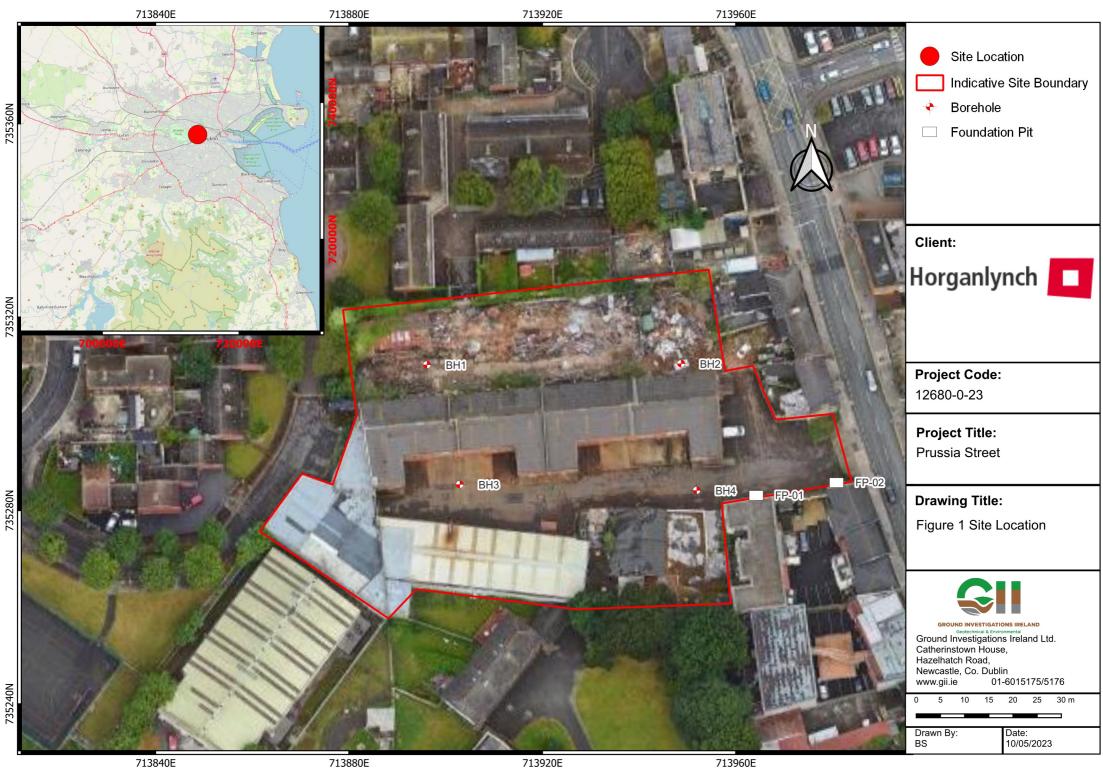
An allowable bearing capacity of 250 kN/m² is recommended for conventional strip or pad foundations on the very stiff dark grey cohesive deposits at a depth of 2.50m BGL. The possibility for variation in the depth of the made ground or brown cohesive deposits in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

A ground bearing floor slab is recommended to be based on the firm or firm to stiff cohesive deposits with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014+A1:2016 and/or NRA SRW CL808 Type E granular stone fill. Where the depth of Made Ground/Soft deposits exceeds 0.9m then suspended floor slabs should be considered.

The pH and sulphate testing completed on samples recovered from the exploratory holes indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack. The samples tested were below the limits of DS1 in the BRE Special Digest 1:2005.

5.3. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry. Excavations in the Made Ground or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.


Any waste material to be removed off site should be disposed of to a suitably licenced landfill. The environmental testing completed during the ground investigation is reported under the cover of a separate GII Waste Classification Report.

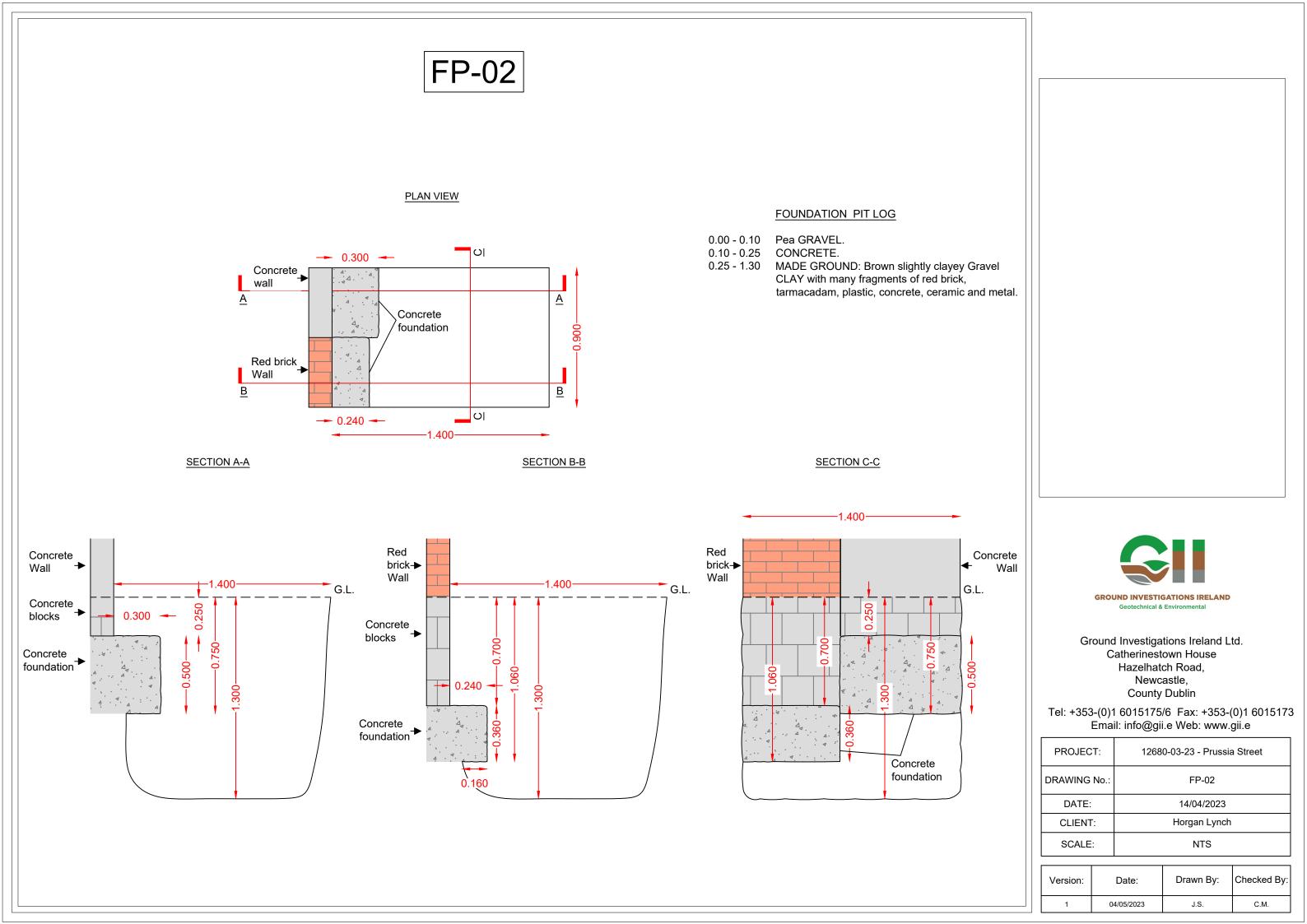
The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable

settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

713840E

713880E


713920E

APPENDIX 2 – Foundation Inspection Pit Records

achine : 3.5T tracked excavator	Dimension	.35m x 0.40m		Ltd Level (mOD)	Site Prussia Street Client	Trial Pi Numbe FP-0 Job Numbe 12680-03
ethod :Trial Pit	Location	,	Dates	4/04/2023	Engineer HorganLynch	Sheet 1/1
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
l'an					MADE GROUND: Grey subangular to subbrounded fine for a coarse Gravel MADE GROUND: Brown slightly sandy slightly gravelly Clay with many fragments of plastic, ceramic and metal Obstruction: Encountered ESB Warning Board Complete at 0.40m	
					No groundwater encountered Trial pit stable Trial pit backfilled upon completion	
			•		,	

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

FP-01

FP-01

FP-02

FP-02

FP-02

APPENDIX 3 – Borehole Records

S		Grou	nd In		igations Ire ww.gii.ie	land	Ltd	Site Prussia Street	Borehole Number BH-01
Flush :W	47S /ater	& Beretta		mm case	er ed to 2.00m ed to 15.00m		Level (mOD 27.26	Client	Job Number 12680-03-2
Core Dia: 63 Method : Pe wi		drilling ollow-on	Locatio		6) E 735310.1 N	Dates 05 25	/04/2023- /04/2023	Engineer HorganLynch	Sheet 1/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Legend
0.00-0.25 0.00-0.70 0.25-0.70 0.70-2.50 0.70-2.50 1.00-1.45					B ES B 2,2/2,3,3,3 B ES SPT(C) N=11	27.01 26.56 26.26	(0.45) 0.70 (0.30)	MADE GROUND: Brown clayey very gravelly fine to coarse Sand with occasional fragments of red brick and mortar MADE GROUND: Dark brown slightly sandy slightly gravelly organic Clay with rare fragments of brick, mortar and coal Brown slightly sandy slightly gravelly CLAY Firm brown slightly sandy slightly gravelly CLAY	
2.00-2.45					5,4/5,8,11,13 SPT(C) N=37	25.26	2.00	Very stiff brown slightly sandy slightly gravelly CLAY	
2.50 2.50-2.50	53				25/50 SPT(C) 25*/0 50/0	24.76		Very stiff dark grey slightly sandy gravelly CLAY with occasional cobbles	2000 200 2000 2
4.00 4.00-4.45	66				4,6/8,7,8,9 SPT(C) N=32				
5.50 5.50-5.95	83				6,8/6,7,9,9 SPT(C) N=31				0 8 8 4 9 8 4 4 9 8 4 4 9 8 4 4 4 4
7.00 7.00-7.45	93				8,7/9,10,12,13 SPT(C) N=44				
8.50 8.50-8.88	100				9,10/15,25,10 SPT(C) 50/225				9 8 4 4 9 8 4 9 8 4 9 8 4 9 9 9 4 9 9 4 9 9 4 9 9 9 9
10.00 Remarks GL to 1.00m	BGL - Red	covery 95%	6		1		<u> </u>	Scale (approx	Logged By
GL to 1.00m 1.00m to 2.00 2.00m to 2.50 Rotary follow Complete at Borehole bac	0m BGL - / on from 2 15.00m B	Recovery 2.50m BGL GL	100%					1:50 Figure	S.B & A.E

Machine : Te	cop S. A.		nd In Casing	WV	igations Ire vw.gii.ie	_	Ltd	Site Prussia Street Client	Borehole Number BH-01 Job
T4 Flush : Wa	-7S		88	mm case	ed to 2.00m ed to 15.00m		27.26		Number 12680-03-2
Core Dia: 63			Locatio			Dates		Engineer	Sheet
Method : Pe wi	ercussion th rotary fo	drilling ollow-on			735310.1 N	05 25	/04/2023- /04/2023	HorganLynch	2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
10.00-10.45	53				8,10/9,12,14,15 SPT(C) N=50	15.76			6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
11.50 11.50-11.95	40				9,11/13,15,16,6 SPT(C) N=50			Recovery consists of dark grey slightly sandy gravelly Clay. Driller notes Boulder Clay (Very Stiff)	
13.00 13.00-13.30	33				12,14/25,25 SPT(C) 50/150		(3.50)		
14.50 14.50-14.73 15.00	40				16,25/50 SPT(C) 50/75	12.26	15.00	Complete at 45,00m	
								Complete at 15.00m	
Remarks								Scale (approx)	Logged By
								1:50	S.B & A.B
								Figure	No. 03-23.BH-01

SI				W	igations Ire ww.gii.ie				Site Prussia Street	Borehole Number BH-02
	47S /ater	& Beretta	68	mm cas mm cas	er ed to 2.00m ed to 3.00m ed to 14.50m		Level (mO 26.58	D)	Client	Job Number 12680-03-2
Method : Pe			Locatio 71		E 735310.3 N		/04/2023- /04/2023		Engineer HorganLynch	Sheet 1/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thicknes	s)	Description	Legend
0.00-0.60 0.00-0.60					B ES	26.38	(0.20 0.2	- 11	MADE GROUND: Brownish grey slightly clayey very sandy subangular to subrounded fine to coarse Gravel with occasional fragments of concrete	
0.60-2.35 0.60-2.35					B ES	25.98	0.6		MADE GROUND: Brown slightly sandy slightly gravelly Clay with rare fragments of brick, mortar, ceramic, coal and shells	
1.00-1.45					0,1/2,3,4,4 SPT(C) N=13	25.58	1.0	∩ '	Brown slightly sandy slightly gravelly CLAY	
							(1.00		Firm brown slightly sandy slightly gravelly CLAY	
000.045					3,3/5,8,8,9	24.58	2.0	0 -	Very stiff brown slightly sandy slightly gravelly CLAY	**********
2.00-2.45					SPT(C) N=30	24.23	(0.3) 2.3	-		• • • • • • • • • • • • • • • • • • •
2.35-3.00 2.35-3.00					B ES	24.23			Very stiff dark grey slightly sandy slightly gravelly CLAY	
3.00 3.00-3.00			-		25/50 SPT(C) 25*/0		 (1.6	5)		• <u>•</u> •••
5.00-5.00	60				50/0					· · · · · · · · · · · · · · · · · · ·
										<u> </u>
I.00			-		4,7/8,8,9,10	22.58	<u> </u>	0	Very stiff dark grey slightly sandy gravelly CLAY with	
4.00-4.45					SPT(C) N=35				occasional cobbles	<u>6 0 0 0</u>
										0 <u>.0</u> 0
	67									<u>, 0 0 0</u>
							-			<u>0 0 0</u> 0
										0.0.0
5.50 5.50-5.95					6,9/8,10,9,11 SPT(C) N=38					0 <u>.0</u> 0
										<u>, 0, 0, 0</u> , 0, 0
										0 <u>.0</u> 0 <u>00</u>
	80									<u>0</u> 00
										· <u>· · · · ·</u> · · ·
7.00			-		7,8/10,9,11,12		<u>-</u>			0 <u>.0</u> 0 0 <u>0</u> 0
7.00-7.45					SPT(C) N=42					0 <u>.0.0</u>
										<u>, 0, 0, 0</u>
	100									<u>6 7 7 6</u>
										0 <u>.0</u> 0
										0,0,0,0
.50 .50-8.95			1		9,8/10,9,11,13 SPT(C) N=43					<u>6 . 0 0</u> .
										0.00
	67							50)		0 <u>0</u> 0
	07							1		<u>, , , , , , , , , , , , , , , , , , , </u>
										<u>0.000</u>
0.00							<u> </u>			<u>, a , o</u>
Remarks GL to 1.00m .00m to 2.00 2.00m to 3.00	BGL - Rec 0m BGL - 0m BGL -	covery 90% Recovery	% 85% 100%						Scale (approx)	Logged By
Rotary follow Complete at	/ on from 3 14.50m B	3.00m BGL GL	-						1:50	S.B & A.E
Borehole bac	ckfilled upo	on complet	tion						Figure 12680-0	No.)3-23.BH-02

S		Grou	nd In	vesti ww	gations Irel /w.gii.ie	land	Ltd	Site Prussia Street			Boreho Numbe BH-0	ər
Machine : Te T ⁴ Flush : W Core Dia: 63	ater	& Beretta	Casing 881 681 961	Diamete nm case nm case			Level (mOD) 26.58	Client			Job Numbe 12680-03	
Method : P		drilling & w on	Locatio		735310.3 N	Dates 05 24	/04/2023- /04/2023	Engineer HorganLynch			Sheet 2/2	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Desc	ription	1	Legend	Water
10.00-10.45 11.50 11.50-11.95	33 67				7,6/8,11,25,6 SPT(C) N=50 8,9/8,10,11,13 SPT(C) N=42						္လံုိင္ရွိေခုႏွင့္လိုိ ခုႏွင့္လိုိ ခုႏွင့္လိုိ ခုႏွင့္လိုိ ခုႏွင့္လိုိ ခုႏွင့္လိုိ ခုႏွင့္လိုိ ခု မရွိလို (၁ ရမ္ကလို (၁ ရမ္ကလို (၁ ရမ္ကလို (၁ ရမ္ကလို)) လို႔ရပ္စ္လံု႔ရပ္စ္လံု႔ရပ္စံလို႔ရပ္စံလို႔ရပ္စံလို႔ရပ	
13.00 13.00-13.38	73				9,6/7,13,30 SPT(C) 50/225	12.08				- - - - - - - - - - - - - - - - - - -	6.000 6.0000 6.0000000 6.0000 6.0000 6.0000000000	
14.50								Complete at 14.50m				
Remarks									S (ar	Scale pprox)	Logge By	d
											S.B & A.	.В
										igure No 2680-03)2

Method : Procussion Online of No. T13002.9 E 735285.3 N 0004/2023 Hospan1,mch Image: No. Image: No. </th <th>lush :W</th> <th>47S /ater</th> <th>& Beretta</th> <th>88 68</th> <th>Diamete mm case mm case</th> <th>ed to 2.00m ed to 2.90m</th> <th></th> <th>Level (mC 26.28</th> <th>D)</th> <th>Client</th> <th></th> <th>Ň</th> <th>ob umbei 680-03-</th>	lush :W	47S /ater	& Beretta	88 68	Diamete mm case mm case	ed to 2.00m ed to 2.90m		Level (mC 26.28	D)	Client		Ň	ob umbei 680-03-
D00-065 D00-065 MADE GROUND: Brownish grey slightly gardy grup and angular to subargular to subargular to subargular met is consistent with mit fragments of metal and to consist and the subargular to subargular to subargular to subargular metal with mit fragments of metal and to consist and the subargular to subargular to subargular to subargular metal with mit fragments of metal and to consist and the subargular to subargular to subargular to subargular metal with mit fragments of metal and to consist and the subargular to subargular to subargular to subargular metal with mit fragments of metal and to consist and the subargular to subargular to subargular to subargular metal with mit fragments of metal and to consist and the subargular to subargular to subargular to subargular metal with mit fragments of metal and to consist and the subargular to subargular to subargular metal to subargular to subargular to subargular metal to subargular to subargular to subargular metal to subargular metal to subargular to subargular metal to subargular metal to subargular to subargular metal to suba	ethod : Pe	ercussion		Locatio	n		05			-		S	heet 1/3
100-0.65 ES (0.65) Important Softward	Depth (m)				FI	Field Records	Level (mOD)	Depth (m) (Thicknes	ss)	Description	Legend	Water	Insti
188-100 1/1/2.2.2 SPTIC() N-7 Es 25.28 (0.35) SPTIC() N-7 Es member organized program Cday with rare fragments of brock. Soft to firm brown motile gray slightly and/y slightly gravity CLAY 1.00-250 1.22.3.4.8 SPTIC() N-18 24.28 2.00 2.00-245 1.22.3.4.8 SPTIC() N-18 24.28 2.00 1.00-250 B 23.78 2.50 1.00-250 B 23.78 2.00 1.00-250 B 2.27.78 2.00 1.00-250 SPTIC() N-18 24.28 2.00 1.00-250 B 2.37.78 2.00 1.00-450 SPTIC() N-18 24.28 2.00 1.00-450 B 2.57.00 2.3.38 2.00 1.00-450 SPTIC() N-18 2.4.28 2.00 1.00-450 SPTIC() N-18 2.4.28 2.00 1.00-4.45 2.7 SPTIC() N-18 2.3.38 1.00 SPTIC() N-18 SPTIC() N-16 1.00-4.45 3.3 SPTIC() N-28 SPTIC() N-28 1.50 SPTIC() N-20 SPTIC() N-42 SPTIC() N-28 1.50 SPTIC() N-28 SPTIC() N-28 SPTIC() N-28 1.50 SPTIC() N-28 SPTIC() N-28 SPTIC() N-28 1.50 SPTIC() N-28						B ES		(0.6	5)	very sandy angular to subangular fine to coarse			
00-14.5 00-2.50 00-2.50 00-2.50 SPTI(C) N=7 ES Set 6 fm brown mothed grightly sandy aphth gravely CLAY (atong hydroathon odor)						ES		(0.3	5)				
.00-2.45 .00-2	.00-2.50					SPT(C) N=7 B	25.28			Soft to firm brown mottled grey slightly sandy slightly gravelly CLAY (strong hydrocarbon odour)			
0.00-2.45 SPT(C) N=18 SIft brown slightly sandy slightly gravelly CLAY 1.50-2.90 B 23.78 2.50 1.50-2.90 33 SPT(C) D=570 Sift draw gray slightly gravelly CLAY 1.50-2.90 33 SPT(C) D=570 Sift draw gray slightly gravelly CLAY 1.50-2.90 33 SPT(C) N=38 SPT(C) N=38 1.50 SPT(C) N=41 SPT(C) N=41 1.50 SPT(C) N=42 SPT(C) N=42						1 2/3 3 4 8	04.00			Granular lens at 1.85m to 1.90m BGL	······································		
33.22.30 33 2550 2550 23.38 2.90 90-2.00 33 33 5.89.8.10.11 2.90 0.00-4.45 27 5.89.8.10.11 5.89.8.10.11 50-5.95 20 5.97(C) N=38 5.97(C) N=38 20 5.97(C) N=41 5.97(C) N=41 50-7.45 33 5.68.9.12.13 50-7.45 33 5.68.9.12.13 50-8.95 7 5.68.9.12.13 50-8.95 7 5.68.9.12.13 50-8.95 7 5.68.9.12.13	.00-2.45							(0.5	0)	Stiff brown slightly sandy slightly gravelly CLAY (strong hydrocarbon odour)	· · · · · · · · · · · · · · · · · · ·		0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
.30 .33 .33 .00 .50 <td>.50-2.90</td> <td></td> <td></td> <td></td> <td></td> <td>ES</td> <td></td> <td>(0.4</td> <td>0)</td> <td></td> <td>······································</td> <td></td> <td></td>	.50-2.90					ES		(0.4	0)		······································		
50 50-5.95 20 6,777.9,10,15 6,777		33				SPT(C) 25*/0	23.30			gravelly Clay with occasional cobbles. Driller notes	<u>1. 위해 위해</u> 2. 위치 위해		
50 50-5.95 20 6,777.9,10,15 6,777											7.9.0.9.9 9.9.9.9 9.9.9.9		0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	.50 50-5 95	27				6,7/7,9,10,15 SPT(C) N=41		F			10101010101010101010101010101010101010		0.000 000 000 000 000 000 000 000 000 0
		20									<u>10101010101010101010101010101010101010</u>		95 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	.00 .00-7.45					8,7/9,12,14,15 SPT(C) N=50					<u> </u>		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		33											0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
0.00 realized in the second seco	50 50-8.95	7				5,6/8,9,12,13 SPT(C) N=42			05)		<u>1000000000000000000000000000000000000</u>		1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Kemarks Scale Lo								<u>-</u>			<u>A 5 7</u>		
Scale (approx) By .00m to 2.00m BGL - Recovery 90%	Remarks L to 1.00m .00m to 2.0	BGL - Rec 0m BGL - I	overy 90% Recoverv	% 80%							Scale approx)	B	oggeo y

Machine : Te T4 Flush : Wa Core Dia: 63	I7S ater	& Beretta	88 68	Diamete mm case mm case	rr ed to 2.00m ed to 2.90m ed to 23.50m		Level (mOD) 26.28	Client			b umber 80-03-2
lethod : Pe		Drilling & v on	Locatio 71		735285.3 N		5/04/2023- /04/2023	Engineer HorganLynch		Sh	eet 2/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00-10.45	7				4,6/7,10,9,11 SPT(C) N=37				DADADADA 1942 1943	00 00 00 00 00 00 00 00 00 00 00 00 00	2 9.2002 0.2000 0.2002 0.0000 0.2002 0.200 10.000 0.000 0.000 0.000 0.000 0.000 10.000 0.000 0.000 0.000 0.000 0.000 10.000 0.000 0.000 0.000 0.000 0.000
1.50 1.50-11.95	20				6,7/9,8,9,12 SPT(C) N=38					00000000000000000000000000000000000000	రా సి పుణికి సినిమా సి ప్రస్తుత్వ సినిమా సి సినిమికి సంగ్రా రిష్ యోగి జిక్టించా చిరిపడు ఇద్దరులు దినియా ఇర్లించా రికి యోగి దిక్కించా చిరిపడు ఇద్దరులు దిన్నరుగా ఇర్లించా
3.00 3.00-13.45	67				4,6/7,10,11,13 SPT(C) N=41				and an	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	რხოდ (ბერფილი დავალი (ბერფილი ებელიდ (ბერფილი) და ამიარი იკილი კინი დავალი იკილი კინი იკილი კი ამიარი იგილი გარი კინი იფილი იკილი კინი კილი ამიარი იგილი გარი კილი იფხიიი და იკი იმხიიი აკი
4.50 4.50-14.65					25,25/50 SPT(C) 50/0					00000-00-00-00-00-00-00-00-00-00-00-00-	0.000000000000000000000000000000000000
4.95	100	33	0	20	-	11.33		Very stiff black silty CLAY with rock fragments / Extremely weak black calcareous MUDSTONE. Distinctly weathered to residual with pyrite growth. 14.95m-16.00m BGL: Two fracture sets - F1: Very close to close, 30-50 degree, planar smooth with clay infill. F2: Closely spaced, 60-80 degree, planar smooth with clay infill.	××	000	ერის და კალი გავილი კალი გავილი ითი გავითი გავილი გავილი ითი გავითი გავითი გავითი გავი ითი ფითი ითი გავითი გავითი გავი იძნიით იამა ითი იძნიით იამა ით
5.00	87	0	0	NI	-		(3.55)	16.00m-18.50m BGL: Mostly non intact	×	ייייייייייייייייייייייייייייייייייייי	ი წერტმებეზით, მეერტმებელით, მეერტმებებლი (ი. 1996 წერი და მიის მერია მერი და მიკი მი ი. 1996 წერი მერი კი მერი მერი მერი მერი მერი ი. 1996 წერი მერი კი მერი კი მერი იკი კი კი 2006 წერია მერი კი კი კი მირი იკი კი კი მირი იკი კი კი
7.50	100	33	23			7 70			××	000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00,000 00	რის მაწილებალი მავილებადი ია დავილი გაია გავილი გავიდი ია ია ია გავავა იკი იკი ფებავა ამ ია ია გავავა იკი იკი ფებავა იკი იკი ამ იი მი ამი ამ ამ ამ ამ იმხიის ია მა
3.50 9.00						7.78		Weak to strong thinly laminated dark grey fine grained argillaceous LIMESTONE with occasional calcite veins. Fresh to moderately weathered			6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
	100	57	47							000 000 000 000	9.00 km 0.00 km 9.00 km 0.00 km 0.00 km 0.00 km 0.00 km 0.00 km 10 km 0.00 km 0.00 km
Remarks	_	_	_	_			_		Scale (approx)	Lo By	ogge /

		Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Ltd	Site Prussia Street		N	orehole umber 8H-03
Machine : Tr T Flush : W		& Beretta	Casing 88 68 96	Diamete mm case mm case			Level (mOD) 26.28	Client		N	ob umber \$80-03-23
Core Dia: 6 Method : P R		Drilling & v on	Locatio		735285.3 N	Dates 05 21	/04/2023- /04/2023	Engineer HorganLynch		S	heet 3/3
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
20.50 22.00 23.50	(%)	73	<pre>(%) 47 67</pre>	10		2.78	(Thičkićess)	Description 18.50m-23.50m BGL: Two fracture sets - F1: Very close to closely spaced, 20-40 degree, undulating rough with clay smearing. F2: Close to medium spaced, 60-80 degree, undulating rough with clay smearing. Close to medium spaced, 60-80 degree, undulating rough with clay smearing. Close to medium spaced, 60-80 degree, undulating rough with clay smearing. Complete at 23.50m			
Remarks									Scale (approx)	L	ogged y
									1:50	S.I	B & A.B
									Figure I 12680-0		3.BH-03

	ecop S. A. a 47S		Casing	W\ Diamete	igations lre ww.gii.ie er ed to 2.00m	1	Level (mOD)	Site Prussia Street Client		Borehole Number BH-04 Job Number
Flush : W Core Dia: 63	/ater		68	mm case	ed to 3.40m ed to 15.00m		25.97			12680-03-2
Method : P		drillina &	Locatio	n		Dates	5/04/2023-	Engineer		Sheet
	otary follov		71	3951.9 E	E 735284.1 N		9/04/2023	HorganLynch		1/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
).00-0.70).00-0.70					B ES		(0.90)	MADE GROUND: Black clayey sandy subangular to subrounded fine to coarse Gravel with rare ceramic fragments		
).70-2.40).70-2.40					2,2/2,3,3,3 B ES	25.07		- Brown slightly sandy slightly gravelly CLAY		
.00-1.45					SPT(C) N=11	24.97	1.00	Firm brown slightly sandy slightly gravelly CLAY		· · · · · · · · · · · · · · · · · · ·
2.00-2.45					3,2/2,3,3,7 SPT(C) N=15	23.97		Stiff brown slightly sandy slightly gravelly CLAY		· · · · · · · · · · · · · · · · · · ·
2.40-3.30					B	23.57	(0.40)	Stiff dark grey slightly sandy slightly gravelly CLAY		
2.40-3.30					ES 7,8/12,16,20,2	22.07	(0.60)			······································
8.00-3.38					SPT(C) 50/230	22.97	(0.40)	Very stiff dark grey slightly sandy slightly gravelly CL		* • • • • • • • • • • • • • • • • • • •
.40 .40-3.40	100				25/50 SPT(C) 25*/0 50/0	22.01		Very stiff dark grey slightly sandy gravelly CLAY with occasional cobbles		
.00 .00-4.45					11,10/14,15,16,5 SPT(C) N=50					
	47									0 <u>0</u> 0 000 000 000 000 000 000 000 000 00
5.50 5.50-5.73					4,25/50 SPT(C) 50/75					
	67						(5.10)			
7.00					11,15/25,25					0.0.0 0.0.0 0.0.0
7.00-7.30					SPT(C) 50/150					
	80									0.0.0 0.0.0 0.0.0 0.0 0.0 0.0
3.50 3.50-8.95					8,7/9,8,10,11 SPT(C) N=38	17.47	8.50	Recovery consists of dark grey clayey sandy coarse with occasional cobbles. Driller notes Boulder Clay w sand (Very Stiff)	Gravel vith	
	23									
0.00							<u> </u>			<u>~~~~~</u>
Remarks GL to 1.00m .00m to 2.0	0m BGL - I	Recovery	85%					(a	Scale approx)	Logged By
2.00m to 3.0 5.00m to 3.4 Rotary follow Complete at	0m BGL - I 0m BGL - I v on from 3	Recovery Recovery .40m BGL GL	90% 70%						1:50 Figure N	S.B & A.B o. 3-23.BH-04

SI			nd In	vest w	igations Ire ww.gii.ie	land	Ltd	Site Prussia Street			Borehole Number BH-04
Machine : Te T4 Flush : Wi Core Dia: 63	7S ater	& Beretta	88 68	mm case	er ed to 2.00m ed to 3.40m ed to 15.00m		Level (mOD) 25.97				Job Number 12680-03-2
Method : Pe Ro		drilling & v on	Locatio 71		735284.1 N		5/04/2023- 9/04/2023	Engineer HorganLynch			Sheet 2/2
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)		Description		Legend
10.00-10.30	20				9,12/25,25 SPT(C) 50/150						
11.50 11.50-11.95	23		-		7,9/8,12,13,15 SPT(C) N=48						
13.00 13.00-13.45	20				8,9/7,11,10,13 SPT(C) N=41						
14.50 14.50-14.95 15.00	40		-		5,7/9,10,12,15 SPT(C) N=46	10.97		Complete at 15.00m			
Remarks										Scale (approx)	Logged By
										1:50	S.B & A.B
								ed by the GEOtechnical			3-23.BH-04

BH01

BH02

BH03

BH03

BH04

APPENDIX 4 – Laboratory Reports

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland diala TESTING 4225 Attention : James Cashen Date : 27th April, 2023 Your reference : 12680-03-23 Our reference : Test Report 23/5826 Batch 1 Prussia Street Location : Date samples received : 14th April, 2023 Status : Final Report

Nine samples were received for analysis on 14th April, 2023 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

1

Authorised By:

Ly Kn

Liza Klebe Project Co-ordinator

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 12680-03-23 Prussia Street James Cashen 23/5826

Report : Solid

EMT Job No:	23/5826									_		
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36			
Sample ID	BH-01	BH-01	BH-02	BH-02	BH-02	BH-03	BH-03	BH-03	BH-03			
Depth	0.00-0.70	0.70-2.50	0.00-0.60	0.60-2.35	2.35-3.00	0.00-0.60	0.60-1.00	1.00-2.50	2.50-2.90		e attached r	
COC No / misc										 abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	 LOD/LOR	Units	No.
Antimony	7	3	3	1	2	1	4	2	2	<1	mg/kg	TM30/PM15
Arsenic [#]	36.6	13.1	19.9	8.4	8.7	16.5	24.5	12.8	10.5	<0.5	mg/kg	TM30/PM15
Barium [#]	130	80	112	40	36	87	159	67	212	<1	mg/kg	TM30/PM15
Cadmium [#]	1.5	2.7	1.7	1.1	2.3	0.4	3.2	1.9	2.5	<0.1	mg/kg	TM30/PM15
Chromium #	50.5	26.1	43.6	20.1	19.7	57.9	90.9	28.0	34.2	 <0.5	mg/kg	TM30/PM15
Copper [#]	95	38	76	24	29	38	84	36	30	<1	mg/kg	TM30/PM15
Lead [#]	190	24	128	19	16	35	153	21	15	<5	mg/kg	TM30/PM15
Mercury [#]	1.0	<0.1	0.4	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum [#]	6.9 78.4	4.7 48.9	5.1	2.3 22.8	3.8	2.6	8.3 64.0	4.7	4.9 40.2	<0.1 <0.7	mg/kg	TM30/PM15 TM30/PM15
Selenium [#]	2	40.9	48.3 1	<1	34.4 3	31.4 1	3	41.8 2	3	<0.7	mg/kg mg/kg	TM30/PM15
Zinc [#]	181	110	177	393	62	108	182	83	91	<5	mg/kg	TM30/PM15
Lino												
PAH MS												
Naphthalene [#]	0.09	<0.04	<0.04	<0.04	<0.04	<0.04	0.19	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.08	<0.04	<0.04	 <0.04	mg/kg	TM4/PM8
Phenanthrene [#]	0.92	<0.03	0.20	<0.03	0.19	0.07	0.36	<0.03	0.07	<0.03	mg/kg	TM4/PM8
Anthracene [#]	0.06	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04	< 0.04	< 0.04	< 0.04	mg/kg	TM4/PM8
Fluoranthene [#] Pyrene [#]	0.15 0.15	<0.03 <0.03	0.08	<0.03 <0.03	0.11	0.06	0.18	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03	mg/kg	TM4/PM8 TM4/PM8
Pyrene Benzo(a)anthracene [#]	0.15	<0.03	0.08	<0.03	0.07	<0.06	0.13	<0.03	<0.03	<0.03	mg/kg mg/kg	TM4/PM8
Chrysene [#]	0.25	<0.02	0.09	<0.02	0.12	0.06	0.15	<0.02	0.05	 <0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene [#]	0.22	<0.07	0.13	<0.07	0.10	0.08	0.19	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	0.13	<0.04	0.07	<0.04	<0.04	0.04	0.10	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	0.06	<0.04	0.05	<0.04	<0.04	<0.04	0.08	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	0.15	<0.04	0.06	<0.04	<0.04	<0.04	0.11	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.26	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 6 Total [#]	0.71	<0.22	0.39	<0.22	<0.22	<0.22	0.66	<0.22	<0.22	<0.22	mg/kg	TM4/PM8
PAH 17 Total	2.42	<0.64	0.85	<0.64	0.70	<0.64	1.99	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.16	<0.05	0.09	< 0.05	0.07	0.06	0.14	< 0.05	<0.05	 < 0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.06 <1	<0.02	0.04	<0.02	0.03	0.02	0.05	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene PAH Surrogate % Recovery	123	<1 102	<1 96	<1 93	<1 95	<1 96	<1 96	<1 92	<1 91	<1 <0	mg/kg %	TM4/PM8 TM4/PM8
A rounogate // Recovery	125	102	30	35	35	30	30	52	51	-0	70	
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	<30	466	<30	<30	mg/kg	TM5/PM8/PM16

Client Name: Reference: Location: Contact: EMT Job No:

Ground Investigations Ireland 12680-03-23 Prussia Street James Cashen 23/5826

Report : Solid

EMT Job No:	23/5826									_		
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36			
Sample ID	BH-01	BH-01	BH-02	BH-02	BH-02	BH-03	BH-03	BH-03	BH-03			
Depth	0.00-0.70	0.70-2.50	0.00-0.60	0.60-2.35	2.35-3.00	0.00-0.60	0.60-1.00	1.00-2.50	2.50-2.90	Please se	e attached r	otes for all
COC No / misc										abbrevia	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1			
Date of Receipt	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	 LOD/LOR	Units	Method No.
TPH CWG	1.00.02020	1 1/0 1/2020	1 110 112020	1 1/0 1/2020	1 1/0 1/2020	1 1/0 1/2020	1 1/0 1/2020	1 1/0 1/2020	1 110 112020			
Aliphatics												
>C5-C6 (HS_1D_AL) [#]	<0.1 ^{\$V}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1 ^{sv}	 <0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL) [#]	<0.1 ^{\$V}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	3.9	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4	<4	<4	<4	<4	<4	76	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL) [#]	<7	<7	<7	<7	<7	<7	<7	281	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)*	<7	<7	<7	<7	<7	<7	<7	105	<7	 <7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL) >C6-C10 (HS 1D AL)	<26 <0.1 ^{SV}	<26 <0.1	<26 <0.1	<26 <0.1	<26 <0.1 ^{SV}	<26 <0.1	<26 <0.1	466 <0.1	<26 <0.1 ^{sv}	<26 <0.1	mg/kg	ТМ36/РМ12
>C10-C25 (EH_1D_AL)	<0.1	<10	<10	<10	<0.1 <10	<10	<10	445	<0.1 <10	<10	mg/kg mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	<10	<10	<10	<10	<10	<10	19	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics			-			-	-				5 5	
>C5-EC7 (HS_1D_AR)#	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) [#]	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	 <0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR) [#]	<4	<4	<4	<4	<4	<4	13	34	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR) [#]	<7	<7	<7	<7	<7	<7	37	194	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)*	<7	<7	<7	<7	<7	<7	15	59	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_1D_AR)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR) Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<26 <52	<26 <52	<26 <52	<26 <52	<26 <52	<26 <52	65 65	287 753	<26 <52	 <26 <52	mg/kg mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS 1D AR) [#]	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1	<0.1	<0.1 ^{sv}	 <0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10	<10	<10	<10	<10	65	284	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE [#]	<5 ^{SV}	<5	<5	<5	<5 ^{SV}	<5	<5	<5	<5 ^{SV}	<5	ug/kg	TM36/PM12
Benzene [#]	<5 ^{SV}	<5	<5	<5	<5 ^{sv}	<5	<5	<5	<5 ^{SV}	 <5	ug/kg	TM36/PM12
Toluene [#]	<5 ^{sv}	<5	<5	<5	<5 ^{sv}	<5	<5	<5	<5 ^{\$V}	<5	ug/kg	TM36/PM12
Ethylbenzene#	<5 ^{sv}	<5 <5	<5 <5	<5 <5	<5 ^{SV}	<5 7	<5 <5	<5 <5	<5 ^{SV}	 <5 <5	ug/kg ug/kg	TM36/PM12 TM36/PM12
m/p-Xylene [#] o-Xylene [#]	<5 <5 ^{SV}	<5	<5	<5	<5 <5 ^{SV}	<5	<5	<5	<5 <5 ^{SV}	<5	ug/kg	TM36/PM12
o Agiono	-0	-	-	-	-5	-	-		-5	-	-33	
PCB 28 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 12680-03-23 Prussia Street James Cashen 23/5826

Report : Solid

EMT Job No:	23/5826											
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36			
Sample ID	BH-01	BH-01	BH-02	BH-02	BH-02	BH-03	BH-03	BH-03	BH-03			
Depth	0.00-0.70	0.70-2.50	0.00-0.60	0.60-2.35	2.35-3.00	0.00-0.60	0.60-1.00	1.00-2.50	2.50-2.90	Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT			
Sample Date	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	LOD/LOR	Units	No.
Natural Moisture Content	27.1	22.0	2.7	23.7	6.2	10.6	61.4	20.4	8.9	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	21.3	18.1	2.7	19.2	5.8	9.6	38.0	17.0	8.1	<0.1	%	PM4/PM0
Hexavalent Chromium [#]	<0.3	<3.0 _{AA}	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) [#]	-	0.0506	-	0.0101	0.0482	-	-	0.0343	-	<0.0015	g/l	TM38/PM20
Chromium III	50.5	26.1	43.6	20.1	19.7	57.9	90.9	28.0	34.2	<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	16.36	0.38	1.93	0.40	0.71	0.69	5.88	0.48	0.56	<0.02	%	TM21/PM24
рН #	8.00	8.52	8.71	8.71	8.72	8.82	8.02	7.98	8.79	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1159	0.0991	0.1208	0.1052	0.0977	0.0996	0.0949	0.1457	0.1002		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17

Client Name: Reference: Location: Contact: EMT Job No: Ground Investigations Ireland 12680-03-23 Prussia Street James Cashen 23/5826

Report : CEN 10:1 1 Batch

V J T 12/04/2023 1 Soil 1	9-12 BH-02 0.00-0.60 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.0161 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.0015 <0.0015 <0.0015 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	Soil 1	17-20 вн-02 2.35-3.00 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.0025 <0.025 <0.009 0.09 <0.0005	21-24 BH-03 0.00-0.60 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.025 <0.025 <0.025 <0.023	25-28 BH-03 0.60-1.00 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.02 <0.02 <0.025 <0.025 <0.025 <0.003	Soil 1 14/04/2023 0.003 0.03 <0.0025	33-36 BH-03 2.50-2.90 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.02 <0.025			e attached n tions and ac Units mg/l	
0.70-2.50 / 1 V J T / 1 Soil / 1 12/04/2023 / 1 14/04/2023 / 1 <0.002 / 1 <0.002 / 1 <0.0025 / 1 <0.007 / 1 <0.007 / 1 <0.007 / 1 <0.007 / 1 <0.0015 / 1 <0.015 / 1 <0.007 / 1 <0.0015 /	0.00-0.60 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 0.0161 0.161 <0.003 <0.003 <0.003 <0.005 <0.005 <0.0015 <0.0015	0.60-2.35 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.0025 <0.025 <0.025 <0.003 <0.003 <0.003 <0.005 <0.005	2.35-3.00 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.025 <0.025 <0.029 0.009 0.09	0.00-0.60 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.0025 <0.025 <0.023	0.60-1.00 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.02 <0.025 <0.025	1.00-2.50 V J T 12/04/2023 Soil 1 14/04/2023 0.003 0.03 <0.0025	2.50-2.90 V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.02		abbrevia LOD/LOR <0.002	utions and ac	Method No.
V J T 1 Soil 1 Soil 1 14/04/2023 1 <0.002	V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.02 0.0161 0.161 <0.003 <0.03 <0.03 <0.005 <0.005 <0.005 <0.0015	V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.0025 <0.025 <0.003 <0.003 <0.03 <0.0005 <0.005	V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.022 <0.025 <0.025 0.009 0.09	V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.022 <0.025 <0.025 <0.023	V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.0025 <0.025	V J T 12/04/2023 Soil 1 14/04/2023 0.003 0.03 <0.0025	V J T 12/04/2023 Soil 1 14/04/2023 <0.002 <0.02		abbrevia LOD/LOR <0.002	utions and ac	Method No.
12/04/2023 1 Soil 1 1 1 1 1 2 0.002 1 <0.002	12/04/2023 Soil 1 14/04/2023 <0.002 <0.0161 0.161 <0.003 <0.003 <0.005 <0.005 <0.0015 <0.015	12/04/2023 Soil 1 14/04/2023 <0.002 <0.0025 <0.025 <0.025 <0.003 <0.03 <0.03 <0.0005 <0.005	12/04/2023 Soil 1 14/04/2023 <0.002 <0.022 <0.025 <0.025 0.009 0.09	12/04/2023 Soil 1 14/04/2023 <0.002 <0.022 <0.025 <0.025 <0.003	12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.0025 <0.025	12/04/2023 Soil 1 14/04/2023 0.003 0.03 <0.0025	12/04/2023 Soil 1 14/04/2023 <0.002 <0.02		LOD/LOR <0.002	Units	Method No.
12/04/2023 1 Soil 1 1 1 1 1 2 0.002 1 <0.002	12/04/2023 Soil 1 14/04/2023 <0.002 <0.0161 0.161 <0.003 <0.003 <0.005 <0.005 <0.0015 <0.015	12/04/2023 Soil 1 14/04/2023 <0.002 <0.0025 <0.025 <0.025 <0.003 <0.03 <0.03 <0.0005 <0.005	12/04/2023 Soil 1 14/04/2023 <0.002 <0.022 <0.025 <0.025 0.009 0.09	12/04/2023 Soil 1 14/04/2023 <0.002 <0.022 <0.025 <0.025 <0.003	12/04/2023 Soil 1 14/04/2023 <0.002 <0.002 <0.0025 <0.025	12/04/2023 Soil 1 14/04/2023 0.003 0.03 <0.0025	12/04/2023 Soil 1 14/04/2023 <0.002 <0.02		<0.002		No.
Soil I 1 1 <0.002	Soil 1 14/04/2023 <0.002 <0.02 0.0161 0.161 <0.003 <0.003 <0.005 <0.005 <0.0015 <0.0015	Soil 1 14/04/2023 <0.002 <0.025 <0.025 <0.025 <0.003 <0.03 <0.0005 <0.005	Soil 1 14/04/2023 <0.002 <0.0025 <0.025 0.009 0.09	Soil 1 14/04/2023 <0.002 <0.025 <0.025 <0.003	Soil 1 14/04/2023 <0.002 <0.022 <0.0025 <0.025	Soil 1 14/04/2023 0.003 0.03 <0.0025	Soil 1 14/04/2023 <0.002 <0.02		<0.002		No.
1 14/04/2023 1 <0.002	1 14/04/2023 <0.002 0.0161 0.161 <0.003 <0.003 <0.005 <0.005 <0.0015 <0.015	1 14/04/2023 <0.002 <0.025 <0.025 <0.003 <0.03 <0.03 <0.0005 <0.005	1 14/04/2023 <0.002 <0.022 <0.025 0.009 0.09	1 14/04/2023 <0.002 <0.022 <0.025 <0.025 <0.003	1 14/04/2023 <0.002 <0.022 <0.025	1 14/04/2023 0.003 0.03 <0.0025	1 14/04/2023 <0.002 <0.02		<0.002		No.
1 14/04/2023 1 <0.002	1 14/04/2023 <0.002 0.0161 0.161 <0.003 <0.003 <0.005 <0.005 <0.0015 <0.015	14/04/2023 <0.002 <0.022 <0.025 <0.025 <0.003 <0.03 <0.0005 <0.005	1 14/04/2023 <0.002 <0.022 <0.025 0.009 0.09	1 14/04/2023 <0.002 <0.022 <0.025 <0.025 <0.003	1 14/04/2023 <0.002 <0.022 <0.025	1 14/04/2023 0.003 0.03 <0.0025	1 14/04/2023 <0.002 <0.02		<0.002		No.
14/04/2023 1 <0.002	14/04/2023 <0.002 0.0161 0.161 <0.003 <0.03 <0.005 <0.005 <0.005 <0.0015 <0.015	14/04/2023 <0.002 <0.022 <0.025 <0.025 <0.003 <0.03 <0.0005 <0.005	14/04/2023 <0.002 <0.02 <0.0025 <0.025 0.009 0.09	14/04/2023 <0.002 <0.02 <0.025 <0.025 <0.003	14/04/2023 <0.002 <0.022 <0.0025 <0.025	14/04/2023 0.003 0.03 <0.0025	14/04/2023 <0.002 <0.02		<0.002		No.
<0.002 <0.02 <0.025 0.007 0.07 <0.005 <0.005 <0.005 <0.0015 <0.015 <0.007	<0.002 <0.02 0.0161 0.161 <0.003 <0.03 <0.005 <0.005 <0.005 <0.0015 <0.015	<0.002 <0.02 <0.025 <0.025 <0.003 <0.03 <0.005 <0.005	<0.002 <0.02 <0.0025 <0.025 0.009 0.09	<0.002 <0.02 <0.025 <0.025 <0.025 <0.003	<0.002 <0.02 <0.0025 <0.025	0.003 0.03 <0.0025	<0.002 <0.02			mg/l	TM30/PM17
<0.02 <0.0025 0.007 0.07 <0.005 <0.005 <0.0015 <0.015 <0.007	<0.02 0.0161 0.161 <0.003 <0.03 <0.0005 <0.0005 <0.0015 <0.015	<0.02 <0.0025 <0.025 <0.003 <0.03 <0.0005 <0.005	<0.02 <0.0025 <0.025 0.009 0.09	<0.02 <0.0025 <0.025 <0.003	<0.02 <0.0025 <0.025	0.03 <0.0025	<0.02			ing/i	
<0.0025 <0.025 0.007 <0.007 <0.0005 <0.005 <0.0015 <0.015 <0.007	0.0161 0.161 <0.003 <0.03 <0.005 <0.005 <0.0015 <0.015	<0.0025 <0.025 <0.003 <0.03 <0.0005 <0.005	<0.0025 <0.025 0.009 0.09	<0.0025 <0.025 <0.003	<0.0025 <0.025	<0.0025				mg/kg	TM30/PM17
<0.025 0.007 0.07 <0.0005 <0.005 <0.0015 <0.015 <0.007	0.161 <0.003 <0.03 <0.0005 <0.005 <0.0015 <0.015	<0.025 <0.003 <0.03 <0.0005 <0.005	<0.025 0.009 0.09	<0.025 <0.003	<0.025				<0.0025	mg/l	TM30/PM17
0.07 <0.0005 <0.005 <0.0015 <0.015 <0.007	<0.03 <0.0005 <0.005 <0.0015 <0.015	<0.03 <0.0005 <0.005	0.09		<0.002	<0.025	<0.025		<0.025	mg/kg	TM30/PM17
<0.0005 <0.005 <0.0015 <0.015 <0.007	<0.0005 <0.005 <0.0015 <0.015	<0.0005 <0.005		<0.03	<0.003	0.041	0.042		<0.003	mg/l	TM30/PM17
<0.005 <0.0015 <0.015 <0.007	<0.005 <0.0015 <0.015	<0.005	<0.0005	~0.05	<0.03	0.41	0.42		<0.03	mg/kg	TM30/PM17
<0.0015 <0.015 <0.007	<0.0015 <0.015			<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	mg/l	TM30/PM17
<0.015 <0.007	<0.015	<0.0015	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/kg	TM30/PM17
<0.007			<0.0015	<0.0015	<0.0015	<0.0015	<0.0015		<0.0015	mg/l	TM30/PM17
	<0.007	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		<0.015	mg/kg	TM30/PM17
<0.07		<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007	mg/l	TM30/PM17
0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		<0.07	mg/kg	TM30/PM17
<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/l	TM30/PM17
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM30/PM17
0.016	0.006	0.015	0.021	0.005	0.014	0.022	0.043		<0.002	mg/l	TM30/PM17
0.16	0.06	0.15	0.21	0.05	0.14	0.22	0.43		<0.02	mg/kg	TM30/PM17
<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
< 0.003	<0.003	< 0.003	0.018	< 0.003	<0.003	< 0.003	<0.003		< 0.003	mg/l	TM30/PM17
<0.03	< 0.03	< 0.03	0.18	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03	mg/kg	TM30/PM17
<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03		<0.003	mg/l	TM30/PM17 TM30/PM17
	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.03 <0.00001	mg/kg	TM61/PM0
<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	mg/l mg/kg	TM61/PM0
										0.0	
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	mg/l	TM26/PM0
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM26/PM0
<0.3	<0.3	0.3	0.3	1.3	2.1	0.5	0.3		<0.3	mg/l	TM173/PM0
<3	<3	3	3	13	21	5	3		<3	mg/kg	TM173/PM0
12.2	5.4	1.0	12.4	4.1	4.5	7.5	3.3		<0.5	mg/l	TM38/PM0
122	54	10	124	41	45	75	33		<5	mg/kg	TM38/PM0
<0.3	0.5	0.3	4.4	0.5	0.6	0.8	0.5		<0.3	mg/l	TM38/PM0
<3	5	3	44	5	6	8	5		<3	mg/kg	TM38/PM0
<2	<2	<2	<2	<2	2	3	<2		<2	mg/l	TM60/PM0
	<20	<20	<20	<20	20	30	<20		<20	mg/kg	TM60/PM0
<20	8.18	8.24	7.90	8.14	8.17	8.29	7.99		<0.01	pH units	TM73/PM0
	93	64	62	62	80	117	47		<35	mg/l	TM20/PM0
<20	930	640	620	620	800	1170	470		<350	mg/kg	TM20/PM0
	<3 12.2 122 <0.3 <3 <2 <20 7.98	 <3 <3 12.2 5.4 122 54 <0.3 0.5 <3 5 <2 <20 <l< td=""><td><3</td> <3</l<>	<3	<3	<3 <3 3 13 12.2 5.4 1.0 12.4 4.1 12.2 5.4 10 12.4 4.1 12.2 5.4 10 12.4 4.1 12.2 5.4 10 12.4 4.1 12.2 5.4 10 12.4 4.1 12.2 5.4 10 12.4 4.1 12.2 5.4 10 12.4 4.1 0.5 0.3 4.4 0.5 5 3 4.4 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>-3 -3 3 3 13 21 12.2 5.4 1.0 12.4 4.1 4.5 122 54 10 124 41 45 -0.3 0.5 0.3 4.4 0.5 0.6 -3 5 3 44 5 6 -2 -2 -2 2 2 -20 -20 -20 -20 20 7.98 8.18 8.24 7.90 8.14 8.17 69 93 64 62 62 80</td> <td>-3 -3 3 3 13 21 5 12.2 5.4 1.0 12.4 4.1 4.5 7.5 122 54 10 124 41 45 75 -0.3 0.5 0.3 4.4 0.5 0.6 0.8 -3 5 3 44 5 6 8 -2 -2 -2 -2 3 - -2 -2 -2 -2 3 - -2 -2 -2 2 3 - -2 -2 -2 2 3 - -2 -2 -2 -2 3 - -2 -2 -2 3 - - - -2 -2 -2 3 - - - - -2 -2 -2 -2 3 - - - - -2 -2 -2 -2 3 - - - - -2<td>-3 -3 3 3 13 21 5 3 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 122 54 10 12.4 4.1 4.5 7.5 3.3 -0.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 -3 5 3 44 5 6 8 5 -2 -2 -2 -2 2.3 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 2.2 3.0 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2</td><td>-3 -3 3 3 13 21 5 3 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 122 54 10 12.4 41 45 7.5 3.3 -0.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 <3</td> 5 3 44 5 6 8 5 6 8 5</td> <td>-3 -3 3 13 21 5 3 -3 -3 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 -</td> <td>-3 -3 3 3 13 21 5 3 -3 mg/kg 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - mg/kg 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - mg/kg 12.2 5.4 10 12.4 4.1 4.5 7.5 3.3 - - mg/kg -0.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 - - mg/kg -3 5 3 44 5 6 8 5 - - mg/kg -4 -4 -4 -4 -</td>	-3 -3 3 3 13 21 12.2 5.4 1.0 12.4 4.1 4.5 122 54 10 124 41 45 -0.3 0.5 0.3 4.4 0.5 0.6 -3 5 3 44 5 6 -2 -2 -2 2 2 -20 -20 -20 -20 20 7.98 8.18 8.24 7.90 8.14 8.17 69 93 64 62 62 80	-3 -3 3 3 13 21 5 12.2 5.4 1.0 12.4 4.1 4.5 7.5 122 54 10 124 41 45 75 -0.3 0.5 0.3 4.4 0.5 0.6 0.8 -3 5 3 44 5 6 8 -2 -2 -2 -2 3 - -2 -2 -2 -2 3 - -2 -2 -2 2 3 - -2 -2 -2 2 3 - -2 -2 -2 -2 3 - -2 -2 -2 3 - - - -2 -2 -2 3 - - - - -2 -2 -2 -2 3 - - - - -2 -2 -2 -2 3 - - - - -2 <td>-3 -3 3 3 13 21 5 3 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 122 54 10 12.4 4.1 4.5 7.5 3.3 -0.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 -3 5 3 44 5 6 8 5 -2 -2 -2 -2 2.3 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 2.2 3.0 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2</td> <td>-3 -3 3 3 13 21 5 3 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 122 54 10 12.4 41 45 7.5 3.3 -0.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 <3</td> 5 3 44 5 6 8 5 6 8 5	-3 -3 3 3 13 21 5 3 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 122 54 10 12.4 4.1 4.5 7.5 3.3 -0.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 -3 5 3 44 5 6 8 5 -2 -2 -2 -2 2.3 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 2.2 3.0 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 -2 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2 -2 -2 2.0 3.0 -2 -2 -2	-3 -3 3 3 13 21 5 3 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 122 54 10 12.4 41 45 7.5 3.3 -0.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 <3	-3 -3 3 13 21 5 3 -3 -3 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - 12.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 -	-3 -3 3 3 13 21 5 3 -3 mg/kg 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - mg/kg 12.2 5.4 1.0 12.4 4.1 4.5 7.5 3.3 - - mg/kg 12.2 5.4 10 12.4 4.1 4.5 7.5 3.3 - - mg/kg -0.3 0.5 0.3 4.4 0.5 0.6 0.8 0.5 - - mg/kg -3 5 3 44 5 6 8 5 - - mg/kg -4 -4 -4 -4 -

 Client Name:
 Ground Investigations Ireland

 Reference:
 12680-03-23

 Location:
 Prussia Street

 Contact:
 James Cashen

Report : EN12457_2

	James Ca 23/5826	ishen													
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36						
Sample ID	BH-01	BH-01	BH-02	BH-02	BH-02	BH-03	BH-03	BH-03	BH-03						
Depth	0.00-0.70	0.70-2.50	0.00-0.60	0.60-2.35	2.35-3.00	0.00-0.60	0.60-1.00	1.00-2.50	2.50-2.90				Please se	e attached n	otes for all
COC No / misc													abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023	12/04/2023						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1		Stable Non-				Method
Date of Receipt	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	14/04/2023	Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis															
Total Organic Carbon #	16.36	0.38	1.93	0.40	0.71	0.69	5.88	0.48	0.56	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025 ^{sv}	<0.025	<0.025	<0.025	<0.025 ^{sv}	<0.025	<0.025	<0.025	<0.025 ^{sv}	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs [#] Mineral Oil	<0.035 <30	<0.035 <30	<0.035 <30	<0.035 <30	<0.035 <30	<0.035 <30	<0.035 <30	<0.035 466	<0.035 <30	1 500	· ·	-	<0.035 <30	mg/kg mg/kg	TM17/PM8 TM5/PM8/PM16
PAH Sum of 6 [#]	<30	<0.22	0.39	<0.22	<0.22	<0.22	<30 0.66	<0.22	<0.22	-	-	-	<0.22	mg/kg mg/kg	TM4/PM8
PAH Sum of 17	2.42	<0.64	0.85	<0.64	0.70	<0.64	1.99	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate															
Arsenic [#]	0.178 <0.03	<0.025 0.07	0.161	<0.025 <0.03	< 0.025	<0.025 <0.03	<0.025 <0.03	<0.025 0.41	<0.025 0.42	0.5 20	2 100	25 300	<0.025 <0.03	mg/kg	TM30/PM17 TM30/PM17
Barium [#] Cadmium [#]	<0.005	<0.005	<0.005	<0.03	0.09	<0.03	< 0.005	<0.005	<0.005	 0.04	100	5	<0.03	mg/kg mg/kg	TM30/PM17 TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	< 0.015	< 0.015	<0.015	<0.015	<0.015	0.5	10	70	< 0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	0.0007	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.04	0.16	0.06	0.15	0.21	0.05	0.14	0.22	0.43	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel [#] Lead [#]	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	0.4	10 10	40 50	<0.02 <0.05	mg/kg mg/kg	TM30/PM17 TM30/PM17
Lead Antimony [#]	0.59	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	0.06	0.7	5	<0.03	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	0.18	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	1510	690	930	640	620	620	800	1170	470	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	<20	<20	<20	<20	<20	20	30	<20	 500	800	1000	<20	mg/kg	TM60/PM0
Dry Matter Content Ratio	77.7	91.3	74.6	85.7	91.8	89.9	94.7	61.7	89.6	-	-	-	<0.1	%	NONE/PM4
Moisture Content 105C (% Dry Weight)	28.7	9.6	34.0	16.7	9.0	11.3	5.6	62.0	11.6	-	-	-	<0.1	%	PM4/PM0
рН *	8.00	8.52	8.71	8.71	8.72	8.82	8.02	7.98	8.79	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	3	3	13	21	5	3	10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	562	122	54	10	124	41	45	75	33	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	<3	5	3	44	5	6	8	5	800	15000	25000	<3	mg/kg	TM38/PM0

Matrix : Solid

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
23/5826	1	BH-01	0.00-0.70	1-4	No interpretation possible
23/5826	1	BH-01	0.70-2.50	5-8	No interpretation possible
23/5826	1	BH-02	0.00-0.60	9-12	No interpretation possible
23/5826	1	BH-02	0.60-2.35	13-16	No interpretation possible
23/5826	1	BH-02	2.35-3.00	17-20	No interpretation possible
23/5826	1	BH-03	0.00-0.60	21-24	No interpretation possible
23/5826	1	BH-03	0.60-1.00	25-28	Trace of possible degraded diesel
23/5826	1	BH-03	1.00-2.50	29-32	Degraded diesel & Possible PAH's
23/5826	1	BH-03	2.50-2.90	33-36	No interpretation possible

Asbestos Analysis

Element Materials Technology

Client Name:	Ground Investigations Ireland
Reference:	12680-03-23
Location:	Prussia Street
Contact:	James Cashen

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/5826	1	BH-01	0.00-0.70	4	Catherine Coles	26/04/2023	General Description (Bulk Analysis)	brown soil,stone
					Catherine Coles	26/04/2023	Asbestos Fibres	NAD
					Catherine Coles	26/04/2023	Asbestos ACM	NAD
					Catherine Coles	26/04/2023	Asbestos Type	NAD
23/5826	1	BH-01	0.70-2.50	8	Charlotte Taylor	26/04/2023	General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	26/04/2023	Asbestos Fibres	NAD
					Charlotte Taylor	26/04/2023	Asbestos ACM	NAD
					Charlotte Taylor	26/04/2023	Asbestos Type	NAD
23/5826	1	BH-02	0.00-0.60	12	Charlotte Taylor	26/04/2023	General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	26/04/2023	Asbestos Fibres	NAD
					Charlotte Taylor	26/04/2023	Asbestos ACM	NAD
					Charlotte Taylor	26/04/2023	Asbestos Type	NAD
23/5826	1	BH-02	0.60-2.35	16	Simon Postlewhite	26/04/2023	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	26/04/2023	Asbestos Fibres	NAD
					Simon Postlewhite	26/04/2023	Asbestos ACM	NAD
					Simon Postlewhite	26/04/2023	Asbestos Type	NAD
23/5826	1	BH-02	2.35-3.00	20	Charlotte Taylor	26/04/2023	General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	26/04/2023	Asbestos Fibres	NAD
					Charlotte Taylor	26/04/2023	Asbestos ACM	NAD
					Charlotte Taylor	26/04/2023	Asbestos Type	NAD
23/5826	1	BH-03	0.00-0.60	24	Simon Postlewhite	26/04/2023	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	26/04/2023	Asbestos Fibres	NAD
					Simon Postlewhite	26/04/2023	Asbestos ACM	NAD
					Simon Postlewhite	26/04/2023	Asbestos Type	NAD
23/5826	1	BH-03	0.60-1.00	28	Catherine Coles	26/04/2023	General Description (Bulk Analysis)	dark brown soil,stones
					Catherine Coles	26/04/2023	Asbestos Fibres	NAD
					Catherine Coles	26/04/2023	Asbestos ACM	NAD
					Catherine Coles	26/04/2023	Asbestos Type	NAD
23/5826	1	BH-03	1.00-2.50	32	Catherine Coles	26/04/2023	General Description (Bulk Analysis)	brown soil,stone
					Catherine Coles	26/04/2023	Asbestos Fibres	NAD
					Catherine Coles	26/04/2023	Asbestos ACM	NAD
					Catherine Coles	26/04/2023	Asbestos Type	NAD

Client Name:
Reference:
Location:
Contact:

Ground Investigations Ireland 12680-03-23 Prussia Street James Cashen Asbestos Analysis

23/5826	4			No.	Analyst Name	Analysis	Analysis	Result
	1	BH-03	2.50-2.90	36	Simon Postlewhite	26/04/2023	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite			NAD
					Simon Postlewhite		Asbestos ACM	NAD
					Simon Postlewhite			NAD
						20/0 //2020		

Client Name:Ground Investigations IrelandReference:12680-03-23Location:Prussia StreetContact:James Cashen

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 23/5826	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/5826

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range
AA	x10 Dilution

HWOL ACRONYMS AND OPERATORS USED

[
HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/5826

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

Method Code Appendix

EMT Job No: 23/5826

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
ТМ38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes

EMT Job No: 23/5826

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland diala TESTING 4225 Attention : James Cashen Date : 27th April, 2023 Your reference : 12680-03-23 Our reference : Test Report 23/5826 Batch 2 Prussia Street Location : Date samples received : 17th April, 2023 Status : Final Report

Three samples were received for analysis on 17th April, 2023 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

1

Authorised By:

h lun

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 12680-03-23 Prussia Street James Cashen 23/5826

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	23/5826									
EMT Sample No.	37-40	41-44	45-48							
Sample ID	BH-04	BH-04	BH-04							
Depth	0.00-0.90	0.90-2.40	2.40-3.30							
COC No / misc	0.00-0.90	0.90-2.40	2.40-3.30						e attached n ations and a	
Containers	VJT	VJT	VJT					1		
								1		
Sample Date			12/04/2023							
Sample Type	Soil	Soil	Soil					ļ		
Batch Number	2	2	2					LOD/LOR	Units	Method No.
Date of Receipt	17/04/2023	17/04/2023	17/04/2023							
Antimony	3	2	2					<1	mg/kg	TM30/PM15
Arsenic [#]	35.5	8.7	11.9					<0.5	mg/kg	TM30/PM15
Barium [#]	95	57	77					<1	mg/kg	TM30/PM15
Cadmium [#]	0.6	1.4	2.2					<0.1	mg/kg	TM30/PM15
Chromium #	36.2	58.9	28.4					<0.5	mg/kg	TM30/PM15
Copper [#] Lead [#]	42 200	26 13	33 17					<1 <5	mg/kg	TM30/PM15 TM30/PM15
Lead Mercury [#]	0.5	<0.1	<0.1					<5 <0.1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Molybdenum [#]	4.0	5.0	5.1					<0.1	mg/kg	TM30/PM15
Nickel [#]	33.9	40.8	44.8					<0.7	mg/kg	TM30/PM15
Selenium [#]	1	<1	4					<1	mg/kg	TM30/PM15
Zinc [#]	88	73	98					<5	mg/kg	TM30/PM15
PAH MS										
Naphthalene [#]	0.06	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	0.29	<0.03	0.07					<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	0.18	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene [#]	0.17	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene [#]	0.17	< 0.06	< 0.06					<0.06	mg/kg	TM4/PM8
Chrysene [#]	0.17 0.27	<0.02 <0.07	0.06 <0.07					<0.02 <0.07	mg/kg	TM4/PM8 TM4/PM8
Benzo(bk)fluoranthene [#] Benzo(a)pyrene [#]	0.27	<0.07	<0.07					<0.07	mg/kg	TM4/PM8
Indeno(123cd)pyrene [#]	0.14	<0.04	<0.04					<0.04	mg/kg mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.08	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	0.10	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
PAH 6 Total [#]	0.77	<0.22	<0.22					<0.22	mg/kg	TM4/PM8
PAH 17 Total	1.63	<0.64	<0.64					<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.19	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.08	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1					<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	92	179 ^{sv}	92					<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30					<30	mg/kg	TM5/PM8/PM16
	1			i	1	1	1	<u> </u>		

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 12680-03-23 Prussia Street James Cashen 23/5826

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	23/5826						_		
EMT Sample No.	37-40	41-44	45-48						
Sample ID	BH-04	BH-04	BH-04						
Donth	0.00-0.90	0.90-2.40	2.40-3.30						
Depth COC No / misc		0.90-2.40	2.40-3.30					e attached r ations and a	
Containers	VJT	VJT	VJT						
Sample Date	12/04/2023	12/04/2023	12/04/2023						
Sample Type	Soil	Soil	Soil						
Batch Number	2	2	2						Method
Date of Receipt	17/04/2023	17/04/2023	17/04/2023				LOD/LOR	Units	No.
TPH CWG									
Aliphatics									
>C5-C6 (HS_1D_AL) [#]	<0.1 ^{SV}	<0.1	<0.1 ^{SV}				<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL) [#]	<0.1 ^{sv}	<0.1	<0.1 ^{sv}				<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1 ^{SV}	<0.1	<0.1 ^{SV}				<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL) [#]	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL) [#]	<4	<4	<4				<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL) [#]	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)*	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	<26	<26	<26				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1 ^{SV}	<0.1	<0.1 ^{SV}				<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10	<10				<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	<10	<10				<10	mg/kg	TM5/PM8/PM16
	<0.1 ^{sv}	-0.1	<0.1 ^{sv}				<0.1	malka	TM36/PM12
>C5-EC7 (HS_1D_AR) [#]	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1				<0.1	mg/kg mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#] >EC8-EC10 (HS_1D_AR) [#]	<0.1 <0.1	<0.1	<0.1 <0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)*	<0.1	<0.2	<0.1				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)*	<4	<4	<4				<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH CU 1D AR) [#]	22	<7	<7				<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	126	<7	<7				<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_1D_AR)	24	<7	<7				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	172	<26	<26				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	172	<52	<52				<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR) [#]	<0.1 ^{SV}	<0.1	<0.1 ^{SV}				<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10	<10				<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	149	<10	<10				<10	mg/kg	TM5/PM8/PM16
	01/		01/						
MTBE [#]	<5 ^{sv}	<5	<5 ^{sv}				<5	ug/kg	TM36/PM12
Benzene#	<5 ^{SV}	<5	<5 ^{SV}				<5	ug/kg	TM36/PM12
Toluene#	<5 ^{SV}	<5	<5 ^{SV}				<5	ug/kg	TM36/PM12
Ethylbenzene [#]	<5 ^{sv}	<5	<5 ^{SV}				<5	ug/kg	TM36/PM12
m/p-Xylene #	<5 ⁸⁰	<5 <5	<5 ^{sv}				<5 <5	ug/kg	TM36/PM12 TM36/PM12
o-Xylene #	<2	-5	<2				-5	ug/kg	
PCB 28 [#]	<5	<5 ^{\$V}	<5				<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	<5 <5 ^{sv}	<5				<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5 <5 ^{sv}	<5				<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	<5 ^{sv}	<5				<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	<5 ^{sv}	<5				<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5 ^{\$V}	<5				<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	<5 ^{sv}	<5				<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35 ^{sv}	<35				<35	ug/kg	TM17/PM8

Client Name: Reference:	Ground In 12680-03 Prussia S		ns Ireland		Report :		- 1-050	i- -	1		
Location:					Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
	James Ca	asnen									
EMT Job No:	23/5826										
EMT Sample No.	37-40	41-44	45-48								
Sample ID	BH-04	BH-04	BH-04								
Depth	0.00-0.90	0.90-2.40	2.40-3.30							e attached n	
COC No / misc									abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT								
Sample Date	12/04/2023	12/04/2023	12/04/2023								
Sample Type	Soil	Soil	Soil								
Batch Number	2	2	2						LOD/LOR	Units	Method
Date of Receipt	17/04/2023	17/04/2023	17/04/2023						LOD/LOR	Units	No.
Natural Moisture Content	15.6	14.4	10.2						<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	13.5	12.6	9.3						<0.1	%	PM4/PM0
. 3,	-										
Hexavalent Chromium [#]	<0.3	<0.3	<0.3						<0.3	mg/kg	TM38/PM2
Sulphate as SO4 (2:1 Ext)#	-	-	0.0489						<0.0015	g/l	TM38/PM2
Chromium III	36.2	58.9	28.4						<0.5	mg/kg	NONE/NON
Total Organic Carbon [#]	2.78	0.28	0.75						<0.02	%	TM21/PM2
pH [#]	8.08	8.49	8.59						<0.01	pH units	TM73/PM1
Mass of raw test portion	0.1122	0.1041	0.0976							kg	NONE/PM1
Mass of dried test portion	0.09	0.09	0.09							kg	NONE/PM1

Client Name: Reference: Location: Contact: EMT Job No: Ground Investigations Ireland 12680-03-23 Prussia Street James Cashen 23/5826

Report : CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

							_		
EMT Sample No.	37-40	41-44	45-48						
Sample ID	BH-04	BH-04	BH-04						
Depth	0.00-0.90	0.90-2.40	2.40-3.30				 Diagon on	e attached n	otoo for all
COC No / misc								ations and a	
Containers	VJT	VJT	VJT						
Sample Date	12/04/2023	12/04/2023	12/04/2023						
Sample Type	Soil	Soil	Soil						
Batch Number	2	2	2				 LOD/LOR	Units	Method No.
Date of Receipt			17/04/2023						
Dissolved Antimony#	0.005	<0.002	<0.002				<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) [#]	0.05	<0.02	<0.02				<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	0.0072	<0.0025	<0.0025				<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) [#]	0.072	<0.025	<0.025				<0.025	mg/kg	TM30/PM17
Dissolved Barium [#]	0.008	<0.003	0.013				<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) [#]	0.08	<0.03	0.13				<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005				<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) [#]	<0.005	<0.005	<0.005				<0.005	mg/kg	TM30/PM17
Dissolved Chromium [#]	<0.0015	<0.0015	<0.0015				<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) [#]	<0.015	<0.015	<0.015				<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	0.015				<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) [#]	<0.07	<0.07	0.15				<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005				<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) [#]	<0.05	<0.05	<0.05				<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum [#]	0.039	0.011	0.038				<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) [#]	0.39	0.11	0.38				<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002	<0.002	<0.002				<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02				<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	<0.003	<0.003	0.022				<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) [#]	<0.03	<0.03	0.22				<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	<0.003	<0.003	<0.003				<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03	<0.03				<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	0.00002	<0.00001	<0.00001				<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	0.0002	<0.0001	<0.0001				<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Phenol	<0.01	<0.01	<0.01				<0.1		TM26/PM0
- HOHOI	-0.1	-0.1	-0.1				-0.1	mg/kg	
Fluoride	<0.3	<0.3	0.3				<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3				<3	mg/kg	TM173/PM0
	-	-	-				-	55	
Sulphate as SO4 [#]	21.3	8.4	26.1				<0.5	mg/l	TM38/PM0
Sulphate as SO4 [#]	213	84	261				<5	mg/kg	TM38/PM0
Chloride [#]	0.7	<0.3	9.2				<0.3	mg/l	TM38/PM0
Chloride [#]	7	<3	92				<3	mg/kg	TM38/PM0
Disselved Organia Castan	2	~	~				<2	ma = //	TM60/PM0
Dissolved Organic Carbon	3 30	<2 <20	<2 <20				<2 <20	mg/l	TM60/PM0 TM60/PM0
Dissolved Organic Carbon								mg/kg	
pH	8.27	8.01	8.05				< 0.01	pH units	TM73/PM0
Total Dissolved Solids [#]	102	54	88				<35	mg/l	TM20/PM0
Total Dissolved Solids [#]	1020	540	880				<350	mg/kg	TM20/PM0

Client Name: Reference:	Ground In 12680-03-	vestigation 23	is Ireland			Report :	EN12457_	_2								
Location: Contact:	Prussia Sl James Ca	treet				Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub										
EMT Job No:	23/5826															
EMT Sample No.	37-40	41-44	45-48													
Sample ID	BH-04	BH-04	BH-04													
Depth	0.00-0.90	0.90-2.40	2.40-3.30											e attached r ations and a		
COC No / misc													abbievi		oronyma	
Containers	VJT	VJT	VJT													
Sample Date	12/04/2023	12/04/2023	12/04/2023													
Sample Type	Soil	Soil	Soil													
Batch Number	2	2	2							Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.	
Date of Receipt	17/04/2023	17/04/2023	17/04/2023													
Solid Waste Analysis Total Organic Carbon [#]	2.78	0.28	0.75							3	5	6	<0.02	%	TM21/PM2	
Sum of BTEX	<0.025 ^{sv}	<0.025	<0.025 ^{sv}							6	-	-	<0.02	70 mg/kg	TM36/PM1	
Sum of 7 PCBs#	<0.035	<0.035 ^{sv}	<0.035							1	-	-	<0.035	mg/kg	TM17/PM	
Mineral Oil	<30	<30	<30							500	-	-	<30	mg/kg	TM5/PM8/PM	
PAH Sum of 6 #	0.77	<0.22	<0.22							-	-	-	<0.22	mg/kg	TM4/PM8	
PAH Sum of 17	1.63	<0.64	<0.64							100	-	-	<0.64	mg/kg	TM4/PM8	
CEN 1011 Lapabata																
CEN 10:1 Leachate	0.072	<0.025	<0.025							0.5	2	25	<0.025	mg/kg	TM30/PM1	
Arsenic Barium #	0.08	< 0.023	0.13							20	100	300	<0.023	mg/kg	TM30/PM1	
Cadmium #	<0.005	<0.005	<0.005							0.04	1	5	<0.005	mg/kg	TM30/PM1	
Chromium #	<0.015	<0.015	<0.015							0.5	10	70	<0.015	mg/kg	TM30/PM1	
Copper [#]	<0.07	<0.07	0.15							2	50	100	<0.07	mg/kg	TM30/PM1	
Mercury#	0.0002	<0.0001	<0.0001							0.01	0.2	2	<0.0001	mg/kg	TM61/PM	
Molybdenum #	0.39	0.11	0.38							0.5	10	30	<0.02	mg/kg	TM30/PM1	
Nickel [#]	<0.02	<0.02	<0.02							0.4	10	40	<0.02	mg/kg	TM30/PM1	
Lead #	<0.05	<0.05	<0.05							0.5	10	50	<0.05	mg/kg	TM30/PM1	
Antimony [#]	0.05	<0.02	<0.02							0.06	0.7	5	<0.02	mg/kg	TM30/PM1	
Selenium #	<0.03	<0.03	0.22							0.1	0.5	7	<0.03	mg/kg	TM30/PM1	
Zinc [#]	<0.03	<0.03	<0.03							4	50	200	<0.03	mg/kg	TM30/PM1	
Total Dissolved Solids #	1020	540	880							4000	60000	100000	<350	mg/kg	TM20/PM	
Dissolved Organic Carbon	30	<20	<20							500	800	1000	<20	mg/kg	TM60/PM	
Dry Matter Content Ratio	79.9	86.9	92.2							-	-	-	<0.1	%	NONE/PM	
Moisture Content 105C (% Dry Weight)	25.1	15.1	8.4							-	-	-	<0.1	%	PM4/PM	
pH #	8.08	8.49	8.59							-	-	-	<0.01	pH units	TM73/PM1	
Phenol	<0.1	<0.1	<0.1							1	-	-	<0.1	mg/kg	TM26/PM	
Fluoride	<3	<3	<3							10	150	500	<3	mg/kg	TM173/PN	
Sulphate as SO4 #	213	84	261							1000	20000	50000	<5	mg/kg	TM38/PM	
Chloride [#]	7	<3	92							800	15000	25000	<3	mg/kg	TM38/PM	
														_		
				1	1	1	1	1		1	1	1	1		1	

Client Name:	Ground Investigations Ireland
Reference:	12680-03-23
Location:	Prussia Street
Contact:	James Cashen

Matrix : Solid

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
23/5826	2	BH-04	0.00-0.90	37-40	Trace of naturally occurring compounds
23/5826	2	BH-04	0.90-2.40	41-44	No interpretation possible
23/5826	2	BH-04	2.40-3.30	45-48	No interpretation possible

Asbestos Analysis

Element Materials Technology

ound Investigations Ireland
680-03-23
ussia Street
mes Cashen

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/5826	2	BH-04	0.00-0.90	40	Simon Postlewhite	27/04/2023	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	27/04/2023	Asbestos Fibres	NAD
					Simon Postlewhite	27/04/2023	Asbestos ACM	NAD
					Simon Postlewhite	27/04/2023	Asbestos Type	NAD
23/5826	2	BH-04	0.90-2.40	44	Simon Postlewhite	27/04/2023	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	27/04/2023	Asbestos Fibres	NAD
					Simon Postlewhite	27/04/2023	Asbestos ACM	NAD
					Simon Postlewhite	27/04/2023	Asbestos Type	NAD
23/5826	2	BH-04	2.40-3.30	48	Simon Postlewhite	27/04/2023	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	27/04/2023	Asbestos Fibres	NAD
					Simon Postlewhite	27/04/2023	Asbestos ACM	NAD
					Simon Postlewhite	27/04/2023	Asbestos Type	NAD

Client Name:Ground Investigations IrelandReference:12680-03-23Location:Prussia StreetContact:James Cashen

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason			
	No deviating sample report results for job 23/5826								

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/5826

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

r	
#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

[
HS	Headspace Analysis.						
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.						
CU	Clean-up - e.g. by florisil, silica gel.						
1D	GC - Single coil gas chromatography.						
Total	Aliphatics & Aromatics.						
AL	Aliphatics only.						
AR	Aromatics only.						
2D	GC-GC - Double coil gas chromatography.						
#1	EH_Total but with humics mathematically subtracted						
#2	EU_Total but with fatty acids mathematically subtracted						
_	Operator - underscore to separate acronyms (exception for +).						
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total						
MS	Mass Spectrometry.						

EMT Job No: 23/5826

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

Method Code Appendix

EMT Job No: 23/5826

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes

EMT Job No: 23/5826

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Method Code Appendix

APPENDIX 5 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

Prussia Street

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
BH-03	16/05/2023	8.32am	2.36m	